国产精品亚洲AV三区_国产精品日本一区二区在线播放_国产成人无码久久久精品一_性感美女视频在线观看免费精品

更多精彩內容,歡迎關注:

視頻號
視頻號

抖音
抖音

快手
快手

微博
微博

快速排序算法例題

文檔

快速排序算法例題

快速排序是由東尼·霍爾所發展的一種排序算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況并不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
推薦度:
導讀快速排序是由東尼·霍爾所發展的一種排序算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況并不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

排序算法是《數據結構與算法》中最基本的算法之一。排序算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等。以下是快速排序算法:

快速排序是由東尼·霍爾所發展的一種排序算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況并不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divide and conquer)策略來把一個串行(list)分為兩個子串行(sub-lists)。

快速排序又是一種分而治之思想在排序算法上的典型應用。本質上來看,快速排序應該算是在冒泡排序基礎上的遞歸分治法。

快速排序的名字起的是簡單粗暴,因為一聽到這個名字你就知道它存在的意義,就是快,而且效率高!它是處理大數據最快的排序算法之一了。雖然 Worst Case 的時間復雜度達到了 O(n?),但是人家就是優秀,在大多數情況下都比平均時間復雜度為 O(n logn) 的排序算法表現要更好,可是這是為什么呢,我也不知道。好在我的強迫癥又犯了,查了 N 多資料終于在《算法藝術與信息學競賽》上找到了滿意的答案:

快速排序的最壞運行情況是 O(n?),比如說順序數列的快排。但它的平攤期望時間是 O(nlogn),且 O(nlogn) 記號中隱含的常數因子很小,比復雜度穩定等于 O(nlogn) 的歸并排序要小很多。所以,對絕大多數順序性較弱的隨機數列而言,快速排序總是優于歸并排序。

1. 算法步驟

從數列中挑出一個元素,稱為 "基準"(pivot);

重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的后面(相同的數可以到任一邊)。在這個分區退出之后,該基準就處于數列的中間位置。這個稱為分區(partition)操作;

遞歸地(recursive)把小于基準值元素的子數列和大于基準值元素的子數列排序;

2. 動圖演示

代碼實現JavaScript實例 function quickSort(arr, left, right) {? ? var len = arr.length,? ? ? ? partitionIndex,? ? ? ? left = typeof left != 'number' ? 0 : left,? ? ? ? right = typeof right != 'number' ? len - 1 : right;? ? if (left < right) {? ? ? ? partitionIndex = partition(arr, left, right);? ? ? ? quickSort(arr, left, partitionIndex-1);? ? ? ? quickSort(arr, partitionIndex+1, right);? ? }? ? return arr;}function partition(arr, left ,right) { ? ? // 分區操作? ? var pivot = left, ? ? ? ? ? ? ? ? ? ? ?// 設定基準值(pivot)? ? ? ? index = pivot + 1;? ? for (var i = index; i <= right; i++) {? ? ? ? if (arr[i] < arr[pivot]) {? ? ? ? ? ? swap(arr, i, index);? ? ? ? ? ? index++;? ? ? ? } ? ? ? ?? ? }? ? swap(arr, pivot, index - 1);? ? return index-1;}function swap(arr, i, j) {? ? var temp = arr[i];? ? arr[i] = arr[j];? ? arr[j] = temp;}function partition2(arr, low, high) {? let pivot = arr[low];? while (low < high) {? ? while (low < high && arr[high] > pivot) {? ? ? --high;? ? }? ? arr[low] = arr[high];? ? while (low < high && arr[low] <= pivot) {? ? ? ++low;? ? }? ? arr[high] = arr[low];? }? arr[low] = pivot;? return low;}function quickSort2(arr, low, high) {? if (low < high) {? ? let pivot = partition2(arr, low, high);? ? quickSort2(arr, low, pivot - 1);? ? quickSort2(arr, pivot + 1, high);? }? return arr;}Python實例 def quickSort(arr, left=None, right=None):? ? left = 0 if not isinstance(left,(int, float)) else left? ? right = len(arr)-1 if not isinstance(right,(int, float)) else right? ? if left < right:? ? ? ? partitionIndex = partition(arr, left, right)? ? ? ? quickSort(arr, left, partitionIndex-1)? ? ? ? quickSort(arr, partitionIndex+1, right)? ? return arrdef partition(arr, left, right):? ? pivot = left? ? index = pivot+1? ? i = index? ? while ?i <= right:? ? ? ? if arr[i] < arr[pivot]:? ? ? ? ? ? swap(arr, i, index)? ? ? ? ? ? index+=1? ? ? ? i+=1? ? swap(arr,pivot,index-1)? ? return index-1def swap(arr, i, j):? ? arr[i], arr[j] = arr[j], arr[i]Go實例 func quickSort(arr []int) []int {? ? ? ? return _quickSort(arr, 0, len(arr)-1)}func _quickSort(arr []int, left, right int) []int {? ? ? ? if left < right {? ? ? ? ? ? ? ? partitionIndex := partition(arr, left, right)? ? ? ? ? ? ? ? _quickSort(arr, left, partitionIndex-1)? ? ? ? ? ? ? ? _quickSort(arr, partitionIndex+1, right)? ? ? ? }? ? ? ? return arr}func partition(arr []int, left, right int) int {? ? ? ? pivot := left? ? ? ? index := pivot + 1? ? ? ? for i := index; i <= right; i++ {? ? ? ? ? ? ? ? if arr[i] < arr[pivot] {? ? ? ? ? ? ? ? ? ? ? ? swap(arr, i, index)? ? ? ? ? ? ? ? ? ? ? ? index += 1? ? ? ? ? ? ? ? }? ? ? ? }? ? ? ? swap(arr, pivot, index-1)? ? ? ? return index - 1}func swap(arr []int, i, j int) {? ? ? ? arr[i], arr[j] = arr[j], arr[i]}C++ 實例 //嚴蔚敏《數據結構》標準分割函數?Paritition1(int A[], int low, int high) {? ?int pivot = A[low];? ?while (low < high) {? ? ?while (low < high && A[high] >= pivot) {? ? ? ?--high;? ? ?}? ? ?A[low] = A[high];? ? ?while (low < high && A[low] <= pivot) {? ? ? ?++low;? ? ?}? ? ?A[high] = A[low];? ?}? ?A[low] = pivot;? ?return low;?}?void QuickSort(int A[], int low, int high) //快排母函數?{? ?if (low < high) {? ? ?int pivot = Paritition1(A, low, high);? ? ?QuickSort(A, low, pivot - 1);? ? ?QuickSort(A, pivot + 1, high);? ?}?}Java實例 public class QuickSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對 arr 進行拷貝,不改變參數內容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? return quickSort(arr, 0, arr.length - 1);? ? }? ? private int[] quickSort(int[] arr, int left, int right) {? ? ? ? if (left < right) {? ? ? ? ? ? int partitionIndex = partition(arr, left, right);? ? ? ? ? ? quickSort(arr, left, partitionIndex - 1);? ? ? ? ? ? quickSort(arr, partitionIndex + 1, right);? ? ? ? }? ? ? ? return arr;? ? }? ? private int partition(int[] arr, int left, int right) {? ? ? ? // 設定基準值(pivot)? ? ? ? int pivot = left;? ? ? ? int index = pivot + 1;? ? ? ? for (int i = index; i <= right; i++) {? ? ? ? ? ? if (arr[i] < arr[pivot]) {? ? ? ? ? ? ? ? swap(arr, i, index);? ? ? ? ? ? ? ? index++;? ? ? ? ? ? }? ? ? ? }? ? ? ? swap(arr, pivot, index - 1);? ? ? ? return index - 1;? ? }? ? private void swap(int[] arr, int i, int j) {? ? ? ? int temp = arr[i];? ? ? ? arr[i] = arr[j];? ? ? ? arr[j] = temp;? ? }}PHP實例 function quickSort($arr){? ? if (count($arr) <= 1)? ? ? ? return $arr;? ? $middle = $arr[0];? ? $leftArray = array();? ? $rightArray = array();? ? for ($i = 1; $i < count($arr); $i++) {? ? ? ? if ($arr[$i] > $middle)? ? ? ? ? ? $rightArray[] = $arr[$i];? ? ? ? else? ? ? ? ? ? $leftArray[] = $arr[$i];? ? }? ? $leftArray = quickSort($leftArray);? ? $leftArray[] = $middle;? ? $rightArray = quickSort($rightArray);? ? return array_merge($leftArray, $rightArray);}C實例 typedef struct _Range {? ? int start, end;} Range;Range new_Range(int s, int e) {? ? Range r;? ? r.start = s;? ? r.end = e;? ? return r;}void swap(int *x, int *y) {? ? int t = *x;? ? *x = *y;? ? *y = t;}void quick_sort(int arr[], const int len) {? ? if (len <= 0)? ? ? ? return; // 避免len等於負值時引發段錯誤(Segment Fault)? ? // r[]模擬列表,p為數量,r[p++]為push,r[--p]為pop且取得元素? ? Range r[len];? ? int p = 0;? ? r[p++] = new_Range(0, len - 1);? ? while (p) {? ? ? ? Range range = r[--p];? ? ? ? if (range.start >= range.end)? ? ? ? ? ? continue;? ? ? ? int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點? ? ? ? int left = range.start, right = range.end;? ? ? ? do {? ? ? ? ? ? while (arr[left] < mid) ++left; ? // 檢測基準點左側是否符合要求? ? ? ? ? ? while (arr[right] > mid) --right; //檢測基準點右側是否符合要求? ? ? ? ? ? if (left <= right) {? ? ? ? ? ? ? ? swap(&arr[left], &arr[right]);? ? ? ? ? ? ? ? left++;? ? ? ? ? ? ? ? right--; ? ? ? ? ? ? ? // 移動指針以繼續? ? ? ? ? ? }? ? ? ? } while (left <= right);? ? ? ? if (range.start < right) r[p++] = new_Range(range.start, right);? ? ? ? if (range.end > left) r[p++] = new_Range(left, range.end);? ? }}

遞歸法

實例 void swap(int *x, int *y) {? ? int t = *x;? ? *x = *y;? ? *y = t;}void quick_sort_recursive(int arr[], int start, int end) {? ? if (start >= end)? ? ? ? return;? ? int mid = arr[end];? ? int left = start, right = end - 1;? ? while (left < right) {? ? ? ? while (arr[left] < mid && left < right)? ? ? ? ? ? left++;? ? ? ? while (arr[right] >= mid && left < right)? ? ? ? ? ? right--;? ? ? ? swap(&arr[left], &arr[right]);? ? }? ? if (arr[left] >= arr[end])? ? ? ? swap(&arr[left], &arr[end]);? ? else? ? ? ? left++;? ? if (left)? ? ? ? quick_sort_recursive(arr, start, left - 1);? ? quick_sort_recursive(arr, left + 1, end);}void quick_sort(int arr[], int len) {? ? quick_sort_recursive(arr, 0, len - 1);}C++

函數法

sort(a,a + n);// 排序a[0]-a[n-1]的所有數.

迭代法

實例 // 參考:http://www.dutor.net/index.php/2011/04/recursive-iterative-quick-sort/struct Range {? ? int start, end;? ? Range(int s = 0, int e = 0) {? ? ? ? start = s, end = e;? ? }};template // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)、"大於"(>)、"不小於"(>=)的運算子功能void quick_sort(T arr[], const int len) {? ? if (len <= 0)? ? ? ? return; // 避免len等於負值時宣告堆疊陣列當機? ? // r[]模擬堆疊,p為數量,r[p++]為push,r[--p]為pop且取得元素? ? Range r[len];? ? int p = 0;? ? r[p++] = Range(0, len - 1);? ? while (p) {? ? ? ? Range range = r[--p];? ? ? ? if (range.start >= range.end)? ? ? ? ? ? continue;? ? ? ? T mid = arr[range.end];? ? ? ? int left = range.start, right = range.end - 1;? ? ? ? while (left < right) {? ? ? ? ? ? while (arr[left] < mid && left < right) left++;? ? ? ? ? ? while (arr[right] >= mid && left < right) right--;? ? ? ? ? ? std::swap(arr[left], arr[right]);? ? ? ? }? ? ? ? if (arr[left] >= arr[range.end])? ? ? ? ? ? std::swap(arr[left], arr[range.end]);? ? ? ? else? ? ? ? ? ? left++;? ? ? ? r[p++] = Range(range.start, left - 1);? ? ? ? r[p++] = Range(left + 1, range.end);? ? }}

遞歸法

實例 template void quick_sort_recursive(T arr[], int start, int end) {? ? if (start >= end)? ? ? ? return;? ? T mid = arr[end];? ? int left = start, right = end - 1;? ? while (left < right) { //在整個范圍內搜尋比樞紐元值小或大的元素,然后將左側元素與右側元素交換? ? ? ? while (arr[left] < mid && left < right) //試圖在左側找到一個比樞紐元更大的元素? ? ? ? ? ? left++;? ? ? ? while (arr[right] >= mid && left < right) //試圖在右側找到一個比樞紐元更小的元素? ? ? ? ? ? right--;? ? ? ? std::swap(arr[left], arr[right]); //交換元素? ? }? ? if (arr[left] >= arr[end])? ? ? ? std::swap(arr[left], arr[end]);? ? else? ? ? ? left++;? ? quick_sort_recursive(arr, start, left - 1);? ? quick_sort_recursive(arr, left + 1, end);}template //整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)、"大於"(>)、"不小於"(>=)的運算子功能void quick_sort(T arr[], int len) {? ? quick_sort_recursive(arr, 0, len - 1);}

參考地址:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/6.quickSort.md

https://zh.wikipedia.org/wiki/%E5%BF%AB%E9%80%9F%E6%8E%92%E5%BA%8F

以下是熱心網友對快速排序算法的補充,僅供參考:

熱心網友提供的補充1:

上方沒有C#實現,我補充一下,如下所示:

//快速排序(目標數組,數組的起始位置,數組的終止位置)
static void QuickSort(int[] array, int left = 0, int right = -1)
{
    if (right.Equals(-1)) right = array.Length - 1;
    try
    {
        int keyValuePosition;   //記錄關鍵值的下標
        //當傳遞的目標數組含有兩個以上的元素時,進行遞歸調用。(即:當傳遞的目標數組只含有一個元素時,此趟排序結束)
        if (left < right)
        {
            keyValuePosition = Partion(array, left, right);  //獲取關鍵值的下標(快排的核心)
            QuickSort(array, left, keyValuePosition - 1);    //遞歸調用,快排劃分出來的左區間
            QuickSort(array, keyValuePosition + 1, right);   //遞歸調用,快排劃分出來的右區間
        }
    }
    catch (Exception ex)
    {
        Console.WriteLine("Exception: {0}", ex);
    }
}

///快速排序的核心部分:確定關鍵值在數組中的位置,以此將數組劃分成左右兩區間,關鍵值游離在外。(返回關鍵值應在數組中的下標)
static int Partion(int[] array, int left, int right)
{
    int leftIndex = left;        //記錄目標數組的起始位置(后續動態的左側下標)
    int rightIndex = right;      //記錄目標數組的結束位置(后續動態的右側下標)
    int keyValue = array[left];  //數組的第一個元素作為關鍵值
    int temp;
    //當 (左側動態下標 == 右側動態下標) 時跳出循環
    while (leftIndex < rightIndex)
    {
        while (leftIndex < rightIndex && array[leftIndex] <= keyValue)  //左側動態下標逐漸增加,直至找到大于keyValue的下標
        {
            leftIndex++;
        }
        while (leftIndex < rightIndex && array[rightIndex] > keyValue)  //右側動態下標逐漸減小,直至找到小于或等于keyValue的下標
        {
            rightIndex--;
        }
        if (leftIndex < rightIndex)  //如果leftIndex < rightIndex,則交換左右動態下標所指定的值;當leftIndex==rightIndex時,跳出整個循環
        {
            temp = array[leftIndex];
            array[leftIndex] = array[rightIndex];
            array[rightIndex] = temp;
        }
    }

    //當左右兩個動態下標相等時(即:左右下標指向同一個位置),此時便可以確定keyValue的準確位置
    temp = keyValue;
    if (temp < array[rightIndex])   //當keyValue < 左右下標同時指向的值,將keyValue與rightIndex - 1指向的值交換,并返回rightIndex - 1
    {
        array[left] = array[rightIndex - 1];
        array[rightIndex - 1] = temp;
        return rightIndex - 1;
    }
    else //當keyValue >= 左右下標同時指向的值,將keyValue與rightIndex指向的值交換,并返回rightIndex
    {
        array[left] = array[rightIndex];
        array[rightIndex] = temp;
        return rightIndex;
    }
}

熱心網友提供的補充2:

補充 scala 實現版本:

/**  
* @Auther: huowang 
* @Date: 19:34:47 2020/12/10  
* @DES:  分區交換算法(快速排序發)  
* @Modified By:  
*/
object PartitionExchange {

  /**    
   * 分區內切割    
   * @param arr    
   * @param left    
   * @param right    
   * @return    
  */  
def partition(arr:Array[Int],left:Int,right: Int):Int={
    // 獲取基準元素 直接選取最右側一個元素為基準元素   
    val pv=arr(right)

    // 把最左邊一個索引作為堆疊索引   
     var storeIndex=left
    //操作數組 -1是因為 最右邊一個元素是基準元素  
   for (i <- left to right-1 ){
       if(arr(i)<=pv){
         //把小于基準元素的元素 都堆到集合左端        
          swap(arr,storeIndex,i)
         // 把用于堆疊索引往前移動一個  
          storeIndex=storeIndex+1 
      }
      //如果出現了比基準元素大的元素,那么則不會移動堆疊索引  
      // 但是如果之后又出現了比基準元素小的元素,那邊會與這個大的元素交換位置
      // 進而使大的元素永遠出現在堆疊索引右側
    }
    // 這里最有右的元素,其實是基準元素,我們把基準元素和最后堆疊索引對應的元素調換位置
    // 這樣基準元素左邊就都是大于它的元素了  
     swap(arr,right,storeIndex)
    // 返回堆疊索引位置,目前堆疊索引指向的就是基準元素 
     storeIndex
  }

def quicksort(arr:Array[Int],left: Int,right: Int):Array[Int]={

    if(right>left){
      // 左右索引不重合 
     // 隨便選擇一個元素作為基準 就選擇最左邊的吧 
     var pivotIndex=0 
     // 切割返回基準元素 
     pivotIndex= partition(arr,left,right)
      // 遞歸對切割形成的兩個子集進行排序 
      quicksort(arr,left,pivotIndex-1)
      quicksort(arr,pivotIndex,right)
    }
    arr
  }


  /**    
    * 調換 a b 元素在數組中的位置    
    * @param arr    
    * @param a    
    * @param b    
    */  
def swap(arr:Array[Int],a:Int,b:Int)={
    val tmp=arr(a)
    arr(a)=arr(b)
    arr(b)=tmp
  }

def main(args: Array[String]): Unit = {
    // 測試
    val arr=Array(5, 2, 9,11,3,6,8,4,0,0)
    val arrNew=quicksort(arr,0,arr.size-1)
    println(arrNew.toList.mkString(","))

  }
}

熱心網友提供的補充3:

補充一下迭代法的 python 實現:

def _partition(array:list, start:int, end:int) -> int:
    """
    將數組指定片段進行左右劃分,首先選擇中位元素為中值。

    比中位元素小的置于其左,與中位元素相等或比中位元素大的置于其右,

    最后返回中位元素的下標位置。
    """
    # 以中位元素為中值劃分,盡量避免極端情況
    mid = (start + end) >> 1
    array[start], array[mid] = array[mid], array[start]
    
    # 劃分的實現
    i, j = start, end
    x = array[start]
    while (i < j):
        if (i < j and array[j] >= x): j -= 1
        array[i] = array[j]
        if (i < j and array[i] < x): i += 1
        array[j] = array[i]
    array[i] = x

    return i


def quickSort(array:list) -> list:
    """
    迭代法快速排序,隊列結構輔助實現。
    """
    sorted_array = array.copy()
    length = len(sorted_array)
    # 使用隊列保存每次劃分的二元組:(起始下標,終止下標)
    queue = []
    queue.append((0, length - 1))

    # 隊列為空,則所有劃分操作執行完畢
    while len(queue):
        left, right = queue.pop(0)
        pos = _partition(sorted_array, left, right)
        # 默認長度為 1 的序列有序,那么區間長度 > 1 才需要劃分,才需要保存到隊列中
        if (left < pos - 1): queue.append((left, pos - 1))
        if (pos + 1 < right): queue.append((pos + 1, right))
    
    return sorted_array


if __name__ == "__main__":
    array = [21, -17, 1, -27, 41, 17, -5, -49]
    sorted_array = quickSort(array)
    print("排序前:{array1}
排序后:{array2}".format(array1=array, array2=sorted_array))
以上為快速排序算法詳細介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等排序算法各有優缺點,用一張圖概括:

關于時間復雜度

平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。

線性對數階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數。 希爾排序

線性階 (O(n)) 排序 基數排序,此外還有桶、箱排序。

關于穩定性

穩定的排序算法:冒泡排序、插入排序、歸并排序和基數排序。

不是穩定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

名詞解釋:

n:數據規模

k:"桶"的個數

In-place:占用常數內存,不占用額外內存

Out-place:占用額外內存

穩定性:排序后 2 個相等鍵值的順序和排序之前它們的順序相同

文檔

快速排序算法例題

快速排序是由東尼·霍爾所發展的一種排序算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況并不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
推薦度:
為你推薦
資訊專欄
熱門視頻
相關推薦
歸并排序的過程舉例 希爾排序的基本原理 選擇排序算法的思路 基數排序過程 冒泡排序算法流程圖 c語言桶排序 堆是什么排序 快速排序法怎么排 歸并排序算法c++實現 希爾排序算法代碼 選擇排序算法的時間復雜度 基數排序的兩個基本過程是 冒泡排序算法思想 c桶排序 堆排序算法例子 編寫快速排序算法 歸并排序算法時間復雜度 希爾排序圖解流程圖 描述選擇排序算法 基數排序算法的基本思想 堆排序算法操作 計數排序python實現 桶排序原理 冒泡排序例子 基數排序的基數什么意思 選擇排序過程 希爾排序c語言實現 歸并排序算法的分治方法 快速排序算法c 堆排序法 計數排序基本原理 桶排序算法原理 冒泡排序怎么優化 基數排序是什么 選擇排序算法代碼 希爾排序過程圖解 歸并排序定義 java快速排序算法代碼 堆排序的初始堆 計數排序java
Top 国产精品亚洲AV三区_国产精品日本一区二区在线播放_国产成人无码久久久精品一_性感美女视频在线观看免费精品
<strike id="cakm0"></strike>
  • <button id="cakm0"><dl id="cakm0"></dl></button>
  • <samp id="cakm0"><tbody id="cakm0"></tbody></samp>
    <samp id="cakm0"><pre id="cakm0"></pre></samp><ul id="cakm0"></ul>
    <strike id="cakm0"></strike>
    <li id="cakm0"></li>
  • <ul id="cakm0"></ul>
  • 先锋影音一区二区三区| 影音先锋日韩资源| 欧美一区二区三区视频| …久久精品99久久香蕉国产| 国产精品爱啪在线线免费观看| 久久视频在线免费观看| 午夜精品久久久久久久白皮肤 | 午夜精品久久久久久久久久久久| 亚洲电影免费在线观看| 国产午夜精品一区二区三区视频| 欧美日韩另类国产亚洲欧美一级| 久久中文字幕一区二区三区| 先锋影音国产一区| 亚洲免费在线视频| 亚洲一区视频| 亚洲综合精品四区| 亚洲午夜视频在线| 亚洲一区二区三区三| 中文一区二区| 亚洲一区二区三区在线播放| 宅男66日本亚洲欧美视频| 亚洲精品在线视频| 在线视频日本亚洲性| 夜夜嗨av一区二区三区四季av| 亚洲精选视频免费看| 亚洲激情视频在线| 亚洲精一区二区三区| 99精品国产高清一区二区| 日韩视频免费在线观看| 亚洲最黄网站| 亚洲视频在线播放| 欧美影片第一页| 久久视频在线看| 欧美大片在线影院| 欧美日韩国产精品一区| 欧美午夜一区二区福利视频| 国产精品外国| 激情成人在线视频| 亚洲美女黄网| 午夜精品久久久| 久久久久国产精品人| 欧美a级片网| 欧美午夜电影在线观看| 国产一区二区三区在线观看网站 | 国产欧美日韩综合一区在线播放 | 午夜激情亚洲| 久久青青草综合| 欧美日韩精品三区| 国产丝袜美腿一区二区三区| 在线播放豆国产99亚洲| 在线视频亚洲一区| 欧美尤物一区| 欧美久久一区| 国产亚洲在线| 99国产精品久久久| 久久国产精品72免费观看| 欧美顶级少妇做爰| 国产视频亚洲精品| 99国产精品视频免费观看一公开| 亚洲欧美国产制服动漫| 理论片一区二区在线| 国产精品国产精品| 亚洲欧洲在线播放| 久久精品亚洲一区| 欧美天堂亚洲电影院在线播放| 伊人久久成人| 亚洲欧美日韩国产一区二区三区 | 亚洲国产精品尤物yw在线观看| 亚洲一区二区三区精品在线| 久久午夜视频| 国产精品一区一区三区| 99在线精品视频| 美女精品一区| 韩日精品视频一区| 亚洲欧美在线一区二区| 欧美日韩在线影院| 亚洲区国产区| 免费观看在线综合色| 国产亚洲精品aa| 亚洲一区二区三区精品视频| 欧美黄色一级视频| 亚洲国产乱码最新视频| 久久久午夜电影| 韩国精品一区二区三区| 欧美有码在线观看视频| 国产精品日韩精品| 亚洲视频国产视频| 国产精品高潮在线| 一区二区三区四区五区在线| 欧美精品综合| 日韩视频在线免费观看| 欧美区视频在线观看| 亚洲精品欧美日韩专区| 欧美母乳在线| 在线亚洲激情| 国产精品区一区| 性做久久久久久| 国产视频一区欧美| 久久久久久久精| 悠悠资源网亚洲青| 欧美成人免费在线视频| 亚洲九九精品| 欧美午夜精品久久久久久孕妇| 在线视频一区二区| 国产精品久久久| 亚洲欧美久久久| 国产亚洲精品久久久久婷婷瑜伽| 久久国产综合精品| 影音先锋欧美精品| 欧美剧在线观看| 亚洲免费一级电影| 国产亚洲在线| 欧美成人一区二区在线| av成人动漫| 国产美女扒开尿口久久久| 久久国产精品99久久久久久老狼| 国产一区二区日韩精品欧美精品 | 国产欧美日韩麻豆91| 久久久久久久网站| 亚洲免费av电影| 国产欧美日韩三级| 欧美大尺度在线观看| 亚洲小说欧美另类婷婷| 伊人久久大香线蕉av超碰演员| 欧美激情一区二区三区| 午夜精品久久久久久99热| 亚洲第一区中文99精品| 国产精品jizz在线观看美国 | 一区在线免费| 欧美日韩在线精品一区二区三区| 欧美在线视频在线播放完整版免费观看 | 欧美影视一区| 亚洲精品一区二区三区av| 国产精品无人区| 免费日本视频一区| 欧美一级在线视频| 亚洲毛片网站| 在线日韩电影| 国产精品影音先锋| 欧美老女人xx| 欧美大片第1页| 欧美专区18| 亚洲一二三区视频在线观看| 亚洲电影下载| 国模叶桐国产精品一区| 国产精品萝li| 国产精品二区影院| 欧美日韩精品一区二区三区四区| 久久婷婷国产综合精品青草| 午夜精品国产精品大乳美女| 99re6这里只有精品| 亚洲黄色av| 亚洲第一精品久久忘忧草社区| 国产区二精品视| 国产区精品视频| 国产精品综合久久久| 国产精品久久国产三级国电话系列 | 国产精品色婷婷久久58| 欧美日韩精品免费观看| 欧美日韩1区2区| 欧美女人交a| 欧美日韩亚洲高清| 欧美日本一区二区三区| 欧美福利一区二区| 欧美精品www在线观看| 欧美成人亚洲| 欧美欧美午夜aⅴ在线观看| 欧美精品一区二区三| 欧美另类人妖| 欧美日韩国产色站一区二区三区| 欧美人交a欧美精品| 欧美理论在线播放| 欧美新色视频| 国产欧美一区二区白浆黑人| 国产亚洲欧美日韩一区二区| 国产综合色一区二区三区| 国产中文一区二区| 在线日韩欧美视频| 日韩视频一区二区三区在线播放| 一本久道久久综合婷婷鲸鱼| 亚洲综合色激情五月| 久久精品国产视频| 免费国产一区二区| 欧美日韩亚洲高清| 国产精品亚洲综合色区韩国| 狠狠色2019综合网| 亚洲日本中文字幕| 亚洲天堂网在线观看| 久久av红桃一区二区小说| 久久只精品国产| 欧美揉bbbbb揉bbbbb| 国产午夜精品久久久久久久| 韩国成人精品a∨在线观看| 最新国产の精品合集bt伙计| 亚洲性视频h| 免费在线看成人av| 国产精品萝li| 亚洲电影免费观看高清完整版在线观看 | 国产精品一区毛片| 在线看国产一区|