<strike id="cakm0"></strike>
  • <button id="cakm0"><dl id="cakm0"></dl></button>
  • <samp id="cakm0"><tbody id="cakm0"></tbody></samp>
    <samp id="cakm0"><pre id="cakm0"></pre></samp><ul id="cakm0"></ul>
    <strike id="cakm0"></strike>
    <li id="cakm0"></li>
  • <ul id="cakm0"></ul>
  • 更多精彩內(nèi)容,歡迎關(guān)注:

    視頻號(hào)
    視頻號(hào)

    抖音
    抖音

    快手
    快手

    微博
    微博

    堆排序算法操作

    文檔

    堆排序算法操作

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。
    推薦度:
    導(dǎo)讀堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。
    .example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

    排序算法是《數(shù)據(jù)結(jié)構(gòu)與算法》中最基本的算法之一。排序算法可以分為內(nèi)部排序和外部排序,內(nèi)部排序是數(shù)據(jù)記錄在內(nèi)存中進(jìn)行排序,而外部排序是因排序的數(shù)據(jù)很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內(nèi)部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等。以下是堆排序算法:

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:

    大頂堆:每個(gè)節(jié)點(diǎn)的值都大于或等于其子節(jié)點(diǎn)的值,在堆排序算法中用于升序排列;小頂堆:每個(gè)節(jié)點(diǎn)的值都小于或等于其子節(jié)點(diǎn)的值,在堆排序算法中用于降序排列;

    堆排序的平均時(shí)間復(fù)雜度為 Ο(nlogn)。

    1. 算法步驟

    創(chuàng)建一個(gè)堆 H[0……n-1];

    把堆首(最大值)和堆尾互換;

    把堆的尺寸縮小 1,并調(diào)用 shift_down(0),目的是把新的數(shù)組頂端數(shù)據(jù)調(diào)整到相應(yīng)位置;

    重復(fù)步驟 2,直到堆的尺寸為 1。

    2. 動(dòng)圖演示

    代碼實(shí)現(xiàn)JavaScript 實(shí)例 var len; ? ?// 因?yàn)槁暶鞯亩鄠€(gè)函數(shù)都需要數(shù)據(jù)長度,所以把len設(shè)置成為全局變量function buildMaxHeap(arr) { ? // 建立大頂堆? ? len = arr.length;? ? for (var i = Math.floor(len/2); i >= 0; i--) {? ? ? ? heapify(arr, i);? ? }}function heapify(arr, i) { ? ? // 堆調(diào)整? ? var left = 2 * i + 1,? ? ? ? right = 2 * i + 2,? ? ? ? largest = i;? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? largest = left;? ? }? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? largest = right;? ? }? ? if (largest != i) {? ? ? ? swap(arr, i, largest);? ? ? ? heapify(arr, largest);? ? }}function swap(arr, i, j) {? ? var temp = arr[i];? ? arr[i] = arr[j];? ? arr[j] = temp;}function heapSort(arr) {? ? buildMaxHeap(arr);? ? for (var i = arr.length-1; i > 0; i--) {? ? ? ? swap(arr, 0, i);? ? ? ? len--;? ? ? ? heapify(arr, 0);? ? }? ? return arr;}Python實(shí)例 def buildMaxHeap(arr):? ? import math? ? for i in range(math.floor(len(arr)/2),-1,-1):? ? ? ? heapify(arr,i)def heapify(arr, i):? ? left = 2*i+1? ? right = 2*i+2? ? largest = i? ? if left < arrLen and arr[left] > arr[largest]:? ? ? ? largest = left? ? if right < arrLen and arr[right] > arr[largest]:? ? ? ? largest = right? ? if largest != i:? ? ? ? swap(arr, i, largest)? ? ? ? heapify(arr, largest)def swap(arr, i, j):? ? arr[i], arr[j] = arr[j], arr[i]def heapSort(arr):? ? global arrLen? ? arrLen = len(arr)? ? buildMaxHeap(arr)? ? for i in range(len(arr)-1,0,-1):? ? ? ? swap(arr,0,i)? ? ? ? arrLen -=1? ? ? ? heapify(arr, 0)? ? return arrGo實(shí)例 func heapSort(arr []int) []int {? ? ? ? arrLen := len(arr)? ? ? ? buildMaxHeap(arr, arrLen)? ? ? ? for i := arrLen - 1; i >= 0; i-- {? ? ? ? ? ? ? ? swap(arr, 0, i)? ? ? ? ? ? ? ? arrLen -= 1? ? ? ? ? ? ? ? heapify(arr, 0, arrLen)? ? ? ? }? ? ? ? return arr}func buildMaxHeap(arr []int, arrLen int) {? ? ? ? for i := arrLen / 2; i >= 0; i-- {? ? ? ? ? ? ? ? heapify(arr, i, arrLen)? ? ? ? }}func heapify(arr []int, i, arrLen int) {? ? ? ? left := 2*i + 1? ? ? ? right := 2*i + 2? ? ? ? largest := i? ? ? ? if left < arrLen && arr[left] > arr[largest] {? ? ? ? ? ? ? ? largest = left? ? ? ? }? ? ? ? if right < arrLen && arr[right] > arr[largest] {? ? ? ? ? ? ? ? largest = right? ? ? ? }? ? ? ? if largest != i {? ? ? ? ? ? ? ? swap(arr, i, largest)? ? ? ? ? ? ? ? heapify(arr, largest, arrLen)? ? ? ? }}func swap(arr []int, i, j int) {? ? ? ? arr[i], arr[j] = arr[j], arr[i]}Java實(shí)例 public class HeapSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對(duì) arr 進(jìn)行拷貝,不改變參數(shù)內(nèi)容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? int len = arr.length;? ? ? ? buildMaxHeap(arr, len);? ? ? ? for (int i = len - 1; i > 0; i--) {? ? ? ? ? ? swap(arr, 0, i);? ? ? ? ? ? len--;? ? ? ? ? ? heapify(arr, 0, len);? ? ? ? }? ? ? ? return arr;? ? }? ? private void buildMaxHeap(int[] arr, int len) {? ? ? ? for (int i = (int) Math.floor(len / 2); i >= 0; i--) {? ? ? ? ? ? heapify(arr, i, len);? ? ? ? }? ? }? ? private void heapify(int[] arr, int i, int len) {? ? ? ? int left = 2 * i + 1;? ? ? ? int right = 2 * i + 2;? ? ? ? int largest = i;? ? ? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? ? ? largest = left;? ? ? ? }? ? ? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? ? ? largest = right;? ? ? ? }? ? ? ? if (largest != i) {? ? ? ? ? ? swap(arr, i, largest);? ? ? ? ? ? heapify(arr, largest, len);? ? ? ? }? ? }? ? private void swap(int[] arr, int i, int j) {? ? ? ? int temp = arr[i];? ? ? ? arr[i] = arr[j];? ? ? ? arr[j] = temp;? ? }}PHP 實(shí)例 function buildMaxHeap(&$arr){? ? global $len;? ? for ($i = floor($len/2); $i >= 0; $i--) {? ? ? ? heapify($arr, $i);? ? }}function heapify(&$arr, $i){? ? global $len;? ? $left = 2 * $i + 1;? ? $right = 2 * $i + 2;? ? $largest = $i;? ? if ($left < $len && $arr[$left] > $arr[$largest]) {? ? ? ? $largest = $left;? ? }? ? if ($right < $len && $arr[$right] > $arr[$largest]) {? ? ? ? $largest = $right;? ? }? ? if ($largest != $i) {? ? ? ? swap($arr, $i, $largest);? ? ? ? heapify($arr, $largest);? ? }}function swap(&$arr, $i, $j){? ? $temp = $arr[$i];? ? $arr[$i] = $arr[$j];? ? $arr[$j] = $temp;}function heapSort($arr) {? ? global $len;? ? $len = count($arr);? ? buildMaxHeap($arr);? ? for ($i = count($arr) - 1; $i > 0; $i--) {? ? ? ? swap($arr, 0, $i);? ? ? ? $len--;? ? ? ? heapify($arr, 0);? ? }? ? return $arr;}C實(shí)例 #include #include void swap(int *a, int *b) {? ? int temp = *b;? ? *b = *a;? ? *a = temp;}void max_heapify(int arr[], int start, int end) {? ? // 建立父節(jié)點(diǎn)指標(biāo)和子節(jié)點(diǎn)指標(biāo)? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節(jié)點(diǎn)指標(biāo)在範(fàn)圍內(nèi)才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個(gè)子節(jié)點(diǎn)大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) //如果父節(jié)點(diǎn)大於子節(jié)點(diǎn)代表調(diào)整完畢,直接跳出函數(shù)? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內(nèi)容再繼續(xù)子節(jié)點(diǎn)和孫節(jié)點(diǎn)比較? ? ? ? ? ? swap(&arr[dad], &arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? int i;? ? // 初始化,i從最後一個(gè)父節(jié)點(diǎn)開始調(diào)整? ? for (i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個(gè)元素和已排好元素前一位做交換,再重新調(diào)整,直到排序完畢? ? for (i = len - 1; i > 0; i--) {? ? ? ? swap(&arr[0], &arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? int i;? ? for (i = 0; i < len; i++)? ? ? ? printf("%d ", arr[i]);? ? printf(" ");? ? return 0;}C++實(shí)例 #include #include using namespace std;void max_heapify(int arr[], int start, int end) {? ? // 建立父節(jié)點(diǎn)指標(biāo)和子節(jié)點(diǎn)指標(biāo)? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節(jié)點(diǎn)指標(biāo)在範(fàn)圍內(nèi)才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個(gè)子節(jié)點(diǎn)大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) // 如果父節(jié)點(diǎn)大於子節(jié)點(diǎn)代表調(diào)整完畢,直接跳出函數(shù)? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內(nèi)容再繼續(xù)子節(jié)點(diǎn)和孫節(jié)點(diǎn)比較? ? ? ? ? ? swap(arr[dad], arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? // 初始化,i從最後一個(gè)父節(jié)點(diǎn)開始調(diào)整? ? for (int i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個(gè)元素和已經(jīng)排好的元素前一位做交換,再從新調(diào)整(剛調(diào)整的元素之前的元素),直到排序完畢? ? for (int i = len - 1; i > 0; i--) {? ? ? ? swap(arr[0], arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? for (int i = 0; i < len; i++)? ? ? ? cout << arr[i] << ' ';? ? cout << endl;? ? return 0;}

    參考文章:

    https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/7.heapSort.md

    https://zh.wikipedia.org/wiki/%E5%A0%86%E6%8E%92%E5%BA%8F

    以下是熱心網(wǎng)友對(duì)堆排序算法的補(bǔ)充,僅供參考:

    熱心網(wǎng)友提供的補(bǔ)充1:

    上方又沒些 C# 的堆排序,艾孜爾江補(bǔ)充如下:

    /// 
    /// 堆排序
    /// 
    /// 待排序數(shù)組
    static void HeapSort(int[] arr)
    {
        int vCount = arr.Length;
        int[] tempKey = new int[vCount + 1];
        // 元素索引從1開始
        for (int i = 0; i < vCount; i++)
        {
            tempKey[i + 1] = arr[i];
        }
        // 初始數(shù)據(jù)建堆(從含最后一個(gè)結(jié)點(diǎn)的子樹開始構(gòu)建,依次向前,形成整個(gè)二叉堆)
        for (int i = vCount / 2; i >= 1; i--)
        {
            Restore(tempKey, i, vCount);
        }
        // 不斷輸出堆頂元素、重構(gòu)堆,進(jìn)行排序
        for (int i = vCount; i > 1; i--)
        {
            int temp = tempKey[i];
            tempKey[i] = tempKey[1];
            tempKey[1] = temp;
            Restore(tempKey, 1, i - 1);
        }
        //排序結(jié)果
        for (int i = 0; i < vCount; i++)
        {
            arr[i] = tempKey[i + 1];
        }
    }
    /// 
    /// 二叉堆的重構(gòu)(針對(duì)于已構(gòu)建好的二叉堆首尾互換之后的重構(gòu))
    /// 
    /// 
    /// 根結(jié)點(diǎn)j
    /// 結(jié)點(diǎn)數(shù)
    static void Restore(int[] arr, int rootNode, int nodeCount)
    {
        while (rootNode <= nodeCount / 2) // 保證根結(jié)點(diǎn)有子樹
        {
            //找出左右兒子的最大值
            int m = (2 * rootNode + 1 <= nodeCount && arr[2 * rootNode + 1] > arr[2 * rootNode]) ? 2 * rootNode + 1 : 2 * rootNode;
            if (arr[m] > arr[rootNode])
            {
                int temp = arr[m];
                arr[m] = arr[rootNode];
                arr[rootNode] = temp;
                rootNode = m;
            }
            else
            {
                break;
            }
        }
    }

    熱心網(wǎng)友提供的補(bǔ)充2:

    堆排序是不穩(wěn)定的排序!

    既然如此,每次構(gòu)建大頂堆時(shí),在 父節(jié)點(diǎn)、左子節(jié)點(diǎn)、右子節(jié)點(diǎn)取三者中最大者作為父節(jié)點(diǎn)就行。我們追尋的只是最終排序后的結(jié)果,所以可以簡(jiǎn)化其中的步驟。

    我將個(gè)人寫的 Java 代碼核心放在下方,有興趣的同學(xué)可以一起討論下:

    public int[] sort(int a[]) {
        int len = a.length - 1;    
        for (int i = len; i > 0; i--) {
            maxHeap(a, i);        
            //交換 跟節(jié)點(diǎn)root 與 最后一個(gè)子節(jié)點(diǎn)i 的位置        
            swap(a, 0, i);        
            //i--無序數(shù)組尺寸減少了 
        }  
        return a;
    }
    
    /**構(gòu)建一個(gè)大頂堆(完全二叉樹 ) 
    * 從  最后一個(gè)非葉子節(jié)點(diǎn)  開始,若父節(jié)點(diǎn)小于子節(jié)點(diǎn),則互換他們兩的位置。然后依次從右至左,從下到上進(jìn)行! 
    * 最后一個(gè)非葉子節(jié)點(diǎn),它的葉子節(jié)點(diǎn) 必定包括了最后一個(gè)(葉子)節(jié)點(diǎn),所以 最后一個(gè)非葉子節(jié)點(diǎn)是 a[(n+1)/2-1] 
     
    * @param a 
    * @param lastIndex 這個(gè)數(shù)組的最后一個(gè)元素 
    */
    static void maxHeap(int a[], int lastIndex) {
        for (int i = (lastIndex + 1) / 2 - 1; i >= 0; i--) {
           //反正 堆排序不穩(wěn)定,先比較父與左子,大則交換;與右子同理。(不care 左子與右子位置是否變了!) 
            if (i * 2 + 1 <= lastIndex && a[i] < a[i * 2 + 1]) {
                swap(a, i, i * 2 + 1);        
            }    
            if (i * 2 + 2 <= lastIndex && a[i] < a[i * 2 + 2]) {
                swap(a, i, i * 2 + 2);        
            }
        }
    }
    
    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
    
    以上為堆排序算法詳細(xì)介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等排序算法各有優(yōu)缺點(diǎn),用一張圖概括:

    關(guān)于時(shí)間復(fù)雜度

    平方階 (O(n2)) 排序 各類簡(jiǎn)單排序:直接插入、直接選擇和冒泡排序。

    線性對(duì)數(shù)階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

    O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數(shù)。 希爾排序

    線性階 (O(n)) 排序 基數(shù)排序,此外還有桶、箱排序。

    關(guān)于穩(wěn)定性

    穩(wěn)定的排序算法:冒泡排序、插入排序、歸并排序和基數(shù)排序。

    不是穩(wěn)定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

    名詞解釋:

    n:數(shù)據(jù)規(guī)模

    k:"桶"的個(gè)數(shù)

    In-place:占用常數(shù)內(nèi)存,不占用額外內(nèi)存

    Out-place:占用額外內(nèi)存

    穩(wěn)定性:排序后 2 個(gè)相等鍵值的順序和排序之前它們的順序相同

    文檔

    堆排序算法操作

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。
    推薦度:
    為你推薦
    資訊專欄
    熱門視頻
    相關(guān)推薦
    快速排序算法例題 歸并排序的過程舉例 希爾排序的基本原理 選擇排序算法的思路 基數(shù)排序過程 冒泡排序算法流程圖 c語言桶排序 堆是什么排序 快速排序法怎么排 歸并排序算法c++實(shí)現(xiàn) 希爾排序算法代碼 選擇排序算法的時(shí)間復(fù)雜度 基數(shù)排序的兩個(gè)基本過程是 冒泡排序算法思想 c桶排序 堆排序算法例子 編寫快速排序算法 歸并排序算法時(shí)間復(fù)雜度 希爾排序圖解流程圖 描述選擇排序算法 計(jì)數(shù)排序python實(shí)現(xiàn) 桶排序原理 冒泡排序例子 基數(shù)排序的基數(shù)什么意思 選擇排序過程 希爾排序c語言實(shí)現(xiàn) 歸并排序算法的分治方法 快速排序算法c 堆排序法 計(jì)數(shù)排序基本原理 桶排序算法原理 冒泡排序怎么優(yōu)化 基數(shù)排序是什么 選擇排序算法代碼 希爾排序過程圖解 歸并排序定義 java快速排序算法代碼 堆排序的初始堆 計(jì)數(shù)排序java 排序算法桶排
    Top 99久久免费精品国产72精品九九 | 欧美精品VIDEOSEX性欧美| 六月婷婷国产精品综合| 国产成人无码精品一区不卡| 国产午夜福利精品一区二区三区 | 无码人妻精品一区二区三区9厂| 久热综合在线亚洲精品| 97精品国产一区二区三区| 亚洲A∨精品一区二区三区| 日韩精品少妇无码受不了| 国语自产精品视频在线看| 人妻精品久久久久中文字幕69 | 国产精品久久久久一区二区三区 | 精品无人码麻豆乱码1区2区 | 国产成人精品在线观看| 日韩精品中文字幕无码一区| 500av大全导航精品| 国产精品videossexohd| 亚洲伊人精品综合在合线| 一本一本久久a久久精品综合| 免费精品国产自产拍在线观看图片| 久久精品国产亚洲AV麻豆~| 91原创国产精品| 国产精品高潮露脸在线观看| 亚洲精品影院久久久久久| 亚洲精品亚洲人成在线观看下载| 亚洲国产精品久久久久秋霞影院| 亚洲国产另类久久久精品小说| www好男人精品视频在线观看| 探花国产精品三级在线播放| 亚洲国产成人久久精品影视| 这里只有精品视频| 2022国产精品视频| 精品视频一区二区三区四区五区| 国产精品青青在线麻豆| 久久精品无码一区二区三区| 国产精品三级av及在线观看| 黑巨人与欧美精品一区| 日本精品视频一视频高清| 91精品国产麻豆国产自产在线| 久热这里只有精品12|