国产精品亚洲AV三区_国产精品日本一区二区在线播放_国产成人无码久久久精品一_性感美女视频在线观看免费精品

更多精彩內容,歡迎關注:

視頻號
視頻號

抖音
抖音

快手
快手

微博
微博

堆排序c語言代碼

文檔

堆排序c語言代碼

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。
推薦度:
導讀堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

排序算法是《數據結構與算法》中最基本的算法之一。排序算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等。以下是堆排序算法:

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:

大頂堆:每個節點的值都大于或等于其子節點的值,在堆排序算法中用于升序排列;小頂堆:每個節點的值都小于或等于其子節點的值,在堆排序算法中用于降序排列;

堆排序的平均時間復雜度為 Ο(nlogn)。

1. 算法步驟

創建一個堆 H[0……n-1];

把堆首(最大值)和堆尾互換;

把堆的尺寸縮小 1,并調用 shift_down(0),目的是把新的數組頂端數據調整到相應位置;

重復步驟 2,直到堆的尺寸為 1。

2. 動圖演示

代碼實現JavaScript 實例 var len; ? ?// 因為聲明的多個函數都需要數據長度,所以把len設置成為全局變量function buildMaxHeap(arr) { ? // 建立大頂堆? ? len = arr.length;? ? for (var i = Math.floor(len/2); i >= 0; i--) {? ? ? ? heapify(arr, i);? ? }}function heapify(arr, i) { ? ? // 堆調整? ? var left = 2 * i + 1,? ? ? ? right = 2 * i + 2,? ? ? ? largest = i;? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? largest = left;? ? }? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? largest = right;? ? }? ? if (largest != i) {? ? ? ? swap(arr, i, largest);? ? ? ? heapify(arr, largest);? ? }}function swap(arr, i, j) {? ? var temp = arr[i];? ? arr[i] = arr[j];? ? arr[j] = temp;}function heapSort(arr) {? ? buildMaxHeap(arr);? ? for (var i = arr.length-1; i > 0; i--) {? ? ? ? swap(arr, 0, i);? ? ? ? len--;? ? ? ? heapify(arr, 0);? ? }? ? return arr;}Python實例 def buildMaxHeap(arr):? ? import math? ? for i in range(math.floor(len(arr)/2),-1,-1):? ? ? ? heapify(arr,i)def heapify(arr, i):? ? left = 2*i+1? ? right = 2*i+2? ? largest = i? ? if left < arrLen and arr[left] > arr[largest]:? ? ? ? largest = left? ? if right < arrLen and arr[right] > arr[largest]:? ? ? ? largest = right? ? if largest != i:? ? ? ? swap(arr, i, largest)? ? ? ? heapify(arr, largest)def swap(arr, i, j):? ? arr[i], arr[j] = arr[j], arr[i]def heapSort(arr):? ? global arrLen? ? arrLen = len(arr)? ? buildMaxHeap(arr)? ? for i in range(len(arr)-1,0,-1):? ? ? ? swap(arr,0,i)? ? ? ? arrLen -=1? ? ? ? heapify(arr, 0)? ? return arrGo實例 func heapSort(arr []int) []int {? ? ? ? arrLen := len(arr)? ? ? ? buildMaxHeap(arr, arrLen)? ? ? ? for i := arrLen - 1; i >= 0; i-- {? ? ? ? ? ? ? ? swap(arr, 0, i)? ? ? ? ? ? ? ? arrLen -= 1? ? ? ? ? ? ? ? heapify(arr, 0, arrLen)? ? ? ? }? ? ? ? return arr}func buildMaxHeap(arr []int, arrLen int) {? ? ? ? for i := arrLen / 2; i >= 0; i-- {? ? ? ? ? ? ? ? heapify(arr, i, arrLen)? ? ? ? }}func heapify(arr []int, i, arrLen int) {? ? ? ? left := 2*i + 1? ? ? ? right := 2*i + 2? ? ? ? largest := i? ? ? ? if left < arrLen && arr[left] > arr[largest] {? ? ? ? ? ? ? ? largest = left? ? ? ? }? ? ? ? if right < arrLen && arr[right] > arr[largest] {? ? ? ? ? ? ? ? largest = right? ? ? ? }? ? ? ? if largest != i {? ? ? ? ? ? ? ? swap(arr, i, largest)? ? ? ? ? ? ? ? heapify(arr, largest, arrLen)? ? ? ? }}func swap(arr []int, i, j int) {? ? ? ? arr[i], arr[j] = arr[j], arr[i]}Java實例 public class HeapSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對 arr 進行拷貝,不改變參數內容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? int len = arr.length;? ? ? ? buildMaxHeap(arr, len);? ? ? ? for (int i = len - 1; i > 0; i--) {? ? ? ? ? ? swap(arr, 0, i);? ? ? ? ? ? len--;? ? ? ? ? ? heapify(arr, 0, len);? ? ? ? }? ? ? ? return arr;? ? }? ? private void buildMaxHeap(int[] arr, int len) {? ? ? ? for (int i = (int) Math.floor(len / 2); i >= 0; i--) {? ? ? ? ? ? heapify(arr, i, len);? ? ? ? }? ? }? ? private void heapify(int[] arr, int i, int len) {? ? ? ? int left = 2 * i + 1;? ? ? ? int right = 2 * i + 2;? ? ? ? int largest = i;? ? ? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? ? ? largest = left;? ? ? ? }? ? ? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? ? ? largest = right;? ? ? ? }? ? ? ? if (largest != i) {? ? ? ? ? ? swap(arr, i, largest);? ? ? ? ? ? heapify(arr, largest, len);? ? ? ? }? ? }? ? private void swap(int[] arr, int i, int j) {? ? ? ? int temp = arr[i];? ? ? ? arr[i] = arr[j];? ? ? ? arr[j] = temp;? ? }}PHP 實例 function buildMaxHeap(&$arr){? ? global $len;? ? for ($i = floor($len/2); $i >= 0; $i--) {? ? ? ? heapify($arr, $i);? ? }}function heapify(&$arr, $i){? ? global $len;? ? $left = 2 * $i + 1;? ? $right = 2 * $i + 2;? ? $largest = $i;? ? if ($left < $len && $arr[$left] > $arr[$largest]) {? ? ? ? $largest = $left;? ? }? ? if ($right < $len && $arr[$right] > $arr[$largest]) {? ? ? ? $largest = $right;? ? }? ? if ($largest != $i) {? ? ? ? swap($arr, $i, $largest);? ? ? ? heapify($arr, $largest);? ? }}function swap(&$arr, $i, $j){? ? $temp = $arr[$i];? ? $arr[$i] = $arr[$j];? ? $arr[$j] = $temp;}function heapSort($arr) {? ? global $len;? ? $len = count($arr);? ? buildMaxHeap($arr);? ? for ($i = count($arr) - 1; $i > 0; $i--) {? ? ? ? swap($arr, 0, $i);? ? ? ? $len--;? ? ? ? heapify($arr, 0);? ? }? ? return $arr;}C實例 #include #include void swap(int *a, int *b) {? ? int temp = *b;? ? *b = *a;? ? *a = temp;}void max_heapify(int arr[], int start, int end) {? ? // 建立父節點指標和子節點指標? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節點指標在範圍內才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) //如果父節點大於子節點代表調整完畢,直接跳出函數? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內容再繼續子節點和孫節點比較? ? ? ? ? ? swap(&arr[dad], &arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? int i;? ? // 初始化,i從最後一個父節點開始調整? ? for (i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個元素和已排好元素前一位做交換,再重新調整,直到排序完畢? ? for (i = len - 1; i > 0; i--) {? ? ? ? swap(&arr[0], &arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? int i;? ? for (i = 0; i < len; i++)? ? ? ? printf("%d ", arr[i]);? ? printf(" ");? ? return 0;}C++實例 #include #include using namespace std;void max_heapify(int arr[], int start, int end) {? ? // 建立父節點指標和子節點指標? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節點指標在範圍內才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) // 如果父節點大於子節點代表調整完畢,直接跳出函數? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內容再繼續子節點和孫節點比較? ? ? ? ? ? swap(arr[dad], arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? // 初始化,i從最後一個父節點開始調整? ? for (int i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個元素和已經排好的元素前一位做交換,再從新調整(剛調整的元素之前的元素),直到排序完畢? ? for (int i = len - 1; i > 0; i--) {? ? ? ? swap(arr[0], arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? for (int i = 0; i < len; i++)? ? ? ? cout << arr[i] << ' ';? ? cout << endl;? ? return 0;}

參考文章:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/7.heapSort.md

https://zh.wikipedia.org/wiki/%E5%A0%86%E6%8E%92%E5%BA%8F

以下是熱心網友對堆排序算法的補充,僅供參考:

熱心網友提供的補充1:

上方又沒些 C# 的堆排序,艾孜爾江補充如下:

/// 
/// 堆排序
/// 
/// 待排序數組
static void HeapSort(int[] arr)
{
    int vCount = arr.Length;
    int[] tempKey = new int[vCount + 1];
    // 元素索引從1開始
    for (int i = 0; i < vCount; i++)
    {
        tempKey[i + 1] = arr[i];
    }
    // 初始數據建堆(從含最后一個結點的子樹開始構建,依次向前,形成整個二叉堆)
    for (int i = vCount / 2; i >= 1; i--)
    {
        Restore(tempKey, i, vCount);
    }
    // 不斷輸出堆頂元素、重構堆,進行排序
    for (int i = vCount; i > 1; i--)
    {
        int temp = tempKey[i];
        tempKey[i] = tempKey[1];
        tempKey[1] = temp;
        Restore(tempKey, 1, i - 1);
    }
    //排序結果
    for (int i = 0; i < vCount; i++)
    {
        arr[i] = tempKey[i + 1];
    }
}
/// 
/// 二叉堆的重構(針對于已構建好的二叉堆首尾互換之后的重構)
/// 
/// 
/// 根結點j
/// 結點數
static void Restore(int[] arr, int rootNode, int nodeCount)
{
    while (rootNode <= nodeCount / 2) // 保證根結點有子樹
    {
        //找出左右兒子的最大值
        int m = (2 * rootNode + 1 <= nodeCount && arr[2 * rootNode + 1] > arr[2 * rootNode]) ? 2 * rootNode + 1 : 2 * rootNode;
        if (arr[m] > arr[rootNode])
        {
            int temp = arr[m];
            arr[m] = arr[rootNode];
            arr[rootNode] = temp;
            rootNode = m;
        }
        else
        {
            break;
        }
    }
}

熱心網友提供的補充2:

堆排序是不穩定的排序!

既然如此,每次構建大頂堆時,在 父節點、左子節點、右子節點取三者中最大者作為父節點就行。我們追尋的只是最終排序后的結果,所以可以簡化其中的步驟。

我將個人寫的 Java 代碼核心放在下方,有興趣的同學可以一起討論下:

public int[] sort(int a[]) {
    int len = a.length - 1;    
    for (int i = len; i > 0; i--) {
        maxHeap(a, i);        
        //交換 跟節點root 與 最后一個子節點i 的位置        
        swap(a, 0, i);        
        //i--無序數組尺寸減少了 
    }  
    return a;
}

/**構建一個大頂堆(完全二叉樹 ) 
* 從  最后一個非葉子節點  開始,若父節點小于子節點,則互換他們兩的位置。然后依次從右至左,從下到上進行! 
* 最后一個非葉子節點,它的葉子節點 必定包括了最后一個(葉子)節點,所以 最后一個非葉子節點是 a[(n+1)/2-1] 
 
* @param a 
* @param lastIndex 這個數組的最后一個元素 
*/
static void maxHeap(int a[], int lastIndex) {
    for (int i = (lastIndex + 1) / 2 - 1; i >= 0; i--) {
       //反正 堆排序不穩定,先比較父與左子,大則交換;與右子同理。(不care 左子與右子位置是否變了!) 
        if (i * 2 + 1 <= lastIndex && a[i] < a[i * 2 + 1]) {
            swap(a, i, i * 2 + 1);        
        }    
        if (i * 2 + 2 <= lastIndex && a[i] < a[i * 2 + 2]) {
            swap(a, i, i * 2 + 2);        
        }
    }
}

private void swap(int[] arr, int i, int j) {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
以上為堆排序算法詳細介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等排序算法各有優缺點,用一張圖概括:

關于時間復雜度

平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。

線性對數階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數。 希爾排序

線性階 (O(n)) 排序 基數排序,此外還有桶、箱排序。

關于穩定性

穩定的排序算法:冒泡排序、插入排序、歸并排序和基數排序。

不是穩定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

名詞解釋:

n:數據規模

k:"桶"的個數

In-place:占用常數內存,不占用額外內存

Out-place:占用額外內存

穩定性:排序后 2 個相等鍵值的順序和排序之前它們的順序相同

文檔

堆排序c語言代碼

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。
推薦度:
為你推薦
資訊專欄
熱門視頻
相關推薦
歸并排序思路 希爾排序c語言 選擇排序法原理 編寫一個冒泡排序算法 用c語言實現堆排序算法 歸并排序算法穩定嗎 希爾排序算法特點 直接選擇排序時間復雜度 冒泡排序原理 堆排序c語言 歸并排序劃分子表 希爾排序算法思想 c語言選擇法排序10個數 用冒泡排序法求閏年 歸并排序的詳細過程 希爾排序c語言程序 c語言選擇排序算法 c語言冒泡排序10個數 歸并排序代碼 希爾排序法 java冒泡排序 選擇排序思想 希爾排序又叫什么名字 歸并排序算法原理 堆排序算法c語言 冒泡排序c語言 選擇排序算法例子 數據結構希爾排序c語言 歸并排序算法流程圖解 堆排序計算 冒泡排序流程圖 排序算法的一般選擇規則 希爾排序c 實現歸并排序利用的算法 堆是一種什么排序方法 降序排序冒泡排序優化 什么是選擇排序法 數據結構希爾排序流程圖 歸并排序算法c語言 快速排序算法原理
Top 国产精品亚洲AV三区_国产精品日本一区二区在线播放_国产成人无码久久久精品一_性感美女视频在线观看免费精品
<strike id="cakm0"></strike>
  • <button id="cakm0"><dl id="cakm0"></dl></button>
  • <samp id="cakm0"><tbody id="cakm0"></tbody></samp>
    <samp id="cakm0"><pre id="cakm0"></pre></samp><ul id="cakm0"></ul>
    <strike id="cakm0"></strike>
    <li id="cakm0"></li>
  • <ul id="cakm0"></ul>
  • 久久久久国产成人精品亚洲午夜| 欧美色另类天堂2015| 亚洲欧洲日本一区二区三区| 欧美日韩在线不卡| 久久久午夜视频| 午夜精品999| 99热免费精品| 亚洲国产你懂的| 国模精品娜娜一二三区| 国产精品美女999| 欧美精品一区视频| 麻豆91精品| 久久精品视频va| 欧美资源在线观看| 亚洲免费在线精品一区| 一区二区三区av| 99热精品在线观看| 亚洲毛片在线观看.| 亚洲人成网站色ww在线| 狠狠色噜噜狠狠色综合久| 国产亚洲欧美日韩一区二区| 国产精品嫩草影院一区二区| 欧美色欧美亚洲另类二区| 欧美日韩精品二区第二页| 欧美大秀在线观看| 欧美精品久久久久久久| 欧美精品久久一区二区| 欧美日本一区二区三区| 欧美精品久久一区| 欧美日韩午夜| 国产精品久久久久久久久久妞妞| 国产精品高潮呻吟久久av黑人| 欧美性事在线| 国产欧美欧美| 激情久久久久| 亚洲日韩第九十九页| 99国产精品视频免费观看一公开| 亚洲精品中文字幕女同| 一区二区三区不卡视频在线观看 | 免费一级欧美片在线观看| 久久影院亚洲| 猛男gaygay欧美视频| 国产精品第2页| 国产精品免费视频观看| 国产综合在线视频| 一区在线视频| 国产精品久久久久久久久动漫| 你懂的亚洲视频| 欧美激情精品久久久久久黑人 | 国产九区一区在线| 国产一区二区三区在线观看网站| 狠狠久久五月精品中文字幕| 在线日韩日本国产亚洲| aa国产精品| 久久国产精品一区二区| 欧美肥婆在线| 国产精品一区二区你懂的| 一区在线免费| 亚洲男人的天堂在线aⅴ视频| 久久亚洲视频| 欧美丝袜一区二区| 在线观看亚洲视频啊啊啊啊| 亚洲视频欧美视频| 蜜臀91精品一区二区三区| 国产精品黄视频| 亚洲国产视频一区二区| 亚洲女女做受ⅹxx高潮| 欧美成人中文| 国模一区二区三区| 正在播放亚洲一区| 欧美成人午夜激情| 国产一区日韩二区欧美三区| 亚洲图片欧洲图片av| 免费观看成人| 精品动漫一区二区| 亚洲欧美日韩国产成人| 欧美日韩亚洲高清一区二区| 在线成人h网| 欧美在线观看视频在线| 国产精品毛片一区二区三区| 亚洲精品免费一二三区| 玖玖综合伊人| 亚洲成人自拍视频| 久久精品中文字幕一区| 国产情侣久久| 欧美一级黄色录像| 国产欧美一区二区三区视频| 亚洲视频一区在线观看| 欧美精品自拍| 一区二区欧美精品| 欧美日韩国产亚洲一区| 99国产精品国产精品久久| 欧美成人自拍| 亚洲精品中文字| 欧美 日韩 国产精品免费观看| 狠狠色2019综合网| 久久动漫亚洲| 黄网站免费久久| 美女网站久久| 亚洲精品老司机| 欧美日韩国产精品自在自线| 日韩视频在线一区| 欧美三级资源在线| 亚洲专区欧美专区| 国产视频一区免费看| 久久成人综合网| 伊大人香蕉综合8在线视| 麻豆精品精华液| 亚洲国产精品悠悠久久琪琪| 欧美国产三区| 亚洲一级二级在线| 国产亚洲成精品久久| 久久夜色精品国产亚洲aⅴ| 精久久久久久| 欧美日韩精品中文字幕| 亚洲夜晚福利在线观看| 国产亚洲成av人在线观看导航 | 国产欧美日韩在线播放| 久久国产主播| 亚洲另类视频| 国产九色精品成人porny| 久久亚洲国产精品日日av夜夜| 亚洲激情一区二区| 国产精品久久久久999| 久久久久久久网| 亚洲伦理中文字幕| 国产亚洲福利一区| 欧美激情视频给我| 香蕉久久夜色精品国产| 91久久香蕉国产日韩欧美9色 | 欧美天堂亚洲电影院在线观看| 欧美在线欧美在线| 亚洲精品视频在线播放| 国产欧美精品日韩| 欧美日韩日本视频| 久久婷婷人人澡人人喊人人爽| 99精品欧美一区二区蜜桃免费| 狠色狠色综合久久| 国产精品欧美日韩久久| 欧美激情中文字幕在线| 久久激情综合网| 亚洲在线一区二区| 99在线视频精品| 亚洲国产天堂网精品网站| 国产精品一区二区久久久久| 欧美日韩高清在线一区| 久久在线91| 久久精品人人做人人爽| 中日韩在线视频| 亚洲电影网站| 国产情人节一区| 免费中文字幕日韩欧美| 久久国内精品视频| 一区二区三区精品视频| 有码中文亚洲精品| 黑人一区二区三区四区五区| 欧美日韩亚洲激情| 麻豆久久久9性大片| 99re8这里有精品热视频免费| 黄色一区三区| 国产欧美日韩免费| 欧美视频免费看| 欧美午夜欧美| 欧美成人精品一区| 久久久久国产精品一区| 亚洲影视九九影院在线观看| 国产精品99久久久久久久女警 | 亚洲经典一区| 国语自产精品视频在线看8查询8| 欧美精品一区二区三区在线看午夜| 亚洲男女自偷自拍图片另类| 亚洲美女性视频| 亚洲国产成人av好男人在线观看| 国产精品色网| 国产欧美 在线欧美| 欧美性猛交xxxx免费看久久久| 欧美激情国产高清| 欧美日韩一区三区四区| 欧美激情亚洲精品| 欧美激情精品久久久| 久久亚洲私人国产精品va| 欧美精品成人91久久久久久久| 久久久久久久久久码影片| 久久精品中文字幕免费mv| 亚洲一区二区三区免费在线观看| 一本到高清视频免费精品| 日韩亚洲欧美高清| 国产精品99久久99久久久二8| 中文亚洲欧美| 亚洲一区二区三区欧美| 亚洲午夜av在线| 香蕉成人久久| 亚洲亚洲精品三区日韩精品在线视频| 99精品国产在热久久婷婷| 午夜在线精品偷拍| 久久高清国产| 麻豆成人综合网| 国产精品家教| 国内精品久久久久国产盗摄免费观看完整版| 国产精品视频你懂的|