国产精品亚洲AV三区_国产精品日本一区二区在线播放_国产成人无码久久久精品一_性感美女视频在线观看免费精品

更多精彩內容,歡迎關注:

視頻號
視頻號

抖音
抖音

快手
快手

微博
微博

堆是一種什么排序方法

文檔

堆是一種什么排序方法

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。
推薦度:
導讀堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

排序算法是《數據結構與算法》中最基本的算法之一。排序算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等。以下是堆排序算法:

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:

大頂堆:每個節點的值都大于或等于其子節點的值,在堆排序算法中用于升序排列;小頂堆:每個節點的值都小于或等于其子節點的值,在堆排序算法中用于降序排列;

堆排序的平均時間復雜度為 Ο(nlogn)。

1. 算法步驟

創建一個堆 H[0……n-1];

把堆首(最大值)和堆尾互換;

把堆的尺寸縮小 1,并調用 shift_down(0),目的是把新的數組頂端數據調整到相應位置;

重復步驟 2,直到堆的尺寸為 1。

2. 動圖演示

代碼實現JavaScript 實例 var len; ? ?// 因為聲明的多個函數都需要數據長度,所以把len設置成為全局變量function buildMaxHeap(arr) { ? // 建立大頂堆? ? len = arr.length;? ? for (var i = Math.floor(len/2); i >= 0; i--) {? ? ? ? heapify(arr, i);? ? }}function heapify(arr, i) { ? ? // 堆調整? ? var left = 2 * i + 1,? ? ? ? right = 2 * i + 2,? ? ? ? largest = i;? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? largest = left;? ? }? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? largest = right;? ? }? ? if (largest != i) {? ? ? ? swap(arr, i, largest);? ? ? ? heapify(arr, largest);? ? }}function swap(arr, i, j) {? ? var temp = arr[i];? ? arr[i] = arr[j];? ? arr[j] = temp;}function heapSort(arr) {? ? buildMaxHeap(arr);? ? for (var i = arr.length-1; i > 0; i--) {? ? ? ? swap(arr, 0, i);? ? ? ? len--;? ? ? ? heapify(arr, 0);? ? }? ? return arr;}Python實例 def buildMaxHeap(arr):? ? import math? ? for i in range(math.floor(len(arr)/2),-1,-1):? ? ? ? heapify(arr,i)def heapify(arr, i):? ? left = 2*i+1? ? right = 2*i+2? ? largest = i? ? if left < arrLen and arr[left] > arr[largest]:? ? ? ? largest = left? ? if right < arrLen and arr[right] > arr[largest]:? ? ? ? largest = right? ? if largest != i:? ? ? ? swap(arr, i, largest)? ? ? ? heapify(arr, largest)def swap(arr, i, j):? ? arr[i], arr[j] = arr[j], arr[i]def heapSort(arr):? ? global arrLen? ? arrLen = len(arr)? ? buildMaxHeap(arr)? ? for i in range(len(arr)-1,0,-1):? ? ? ? swap(arr,0,i)? ? ? ? arrLen -=1? ? ? ? heapify(arr, 0)? ? return arrGo實例 func heapSort(arr []int) []int {? ? ? ? arrLen := len(arr)? ? ? ? buildMaxHeap(arr, arrLen)? ? ? ? for i := arrLen - 1; i >= 0; i-- {? ? ? ? ? ? ? ? swap(arr, 0, i)? ? ? ? ? ? ? ? arrLen -= 1? ? ? ? ? ? ? ? heapify(arr, 0, arrLen)? ? ? ? }? ? ? ? return arr}func buildMaxHeap(arr []int, arrLen int) {? ? ? ? for i := arrLen / 2; i >= 0; i-- {? ? ? ? ? ? ? ? heapify(arr, i, arrLen)? ? ? ? }}func heapify(arr []int, i, arrLen int) {? ? ? ? left := 2*i + 1? ? ? ? right := 2*i + 2? ? ? ? largest := i? ? ? ? if left < arrLen && arr[left] > arr[largest] {? ? ? ? ? ? ? ? largest = left? ? ? ? }? ? ? ? if right < arrLen && arr[right] > arr[largest] {? ? ? ? ? ? ? ? largest = right? ? ? ? }? ? ? ? if largest != i {? ? ? ? ? ? ? ? swap(arr, i, largest)? ? ? ? ? ? ? ? heapify(arr, largest, arrLen)? ? ? ? }}func swap(arr []int, i, j int) {? ? ? ? arr[i], arr[j] = arr[j], arr[i]}Java實例 public class HeapSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對 arr 進行拷貝,不改變參數內容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? int len = arr.length;? ? ? ? buildMaxHeap(arr, len);? ? ? ? for (int i = len - 1; i > 0; i--) {? ? ? ? ? ? swap(arr, 0, i);? ? ? ? ? ? len--;? ? ? ? ? ? heapify(arr, 0, len);? ? ? ? }? ? ? ? return arr;? ? }? ? private void buildMaxHeap(int[] arr, int len) {? ? ? ? for (int i = (int) Math.floor(len / 2); i >= 0; i--) {? ? ? ? ? ? heapify(arr, i, len);? ? ? ? }? ? }? ? private void heapify(int[] arr, int i, int len) {? ? ? ? int left = 2 * i + 1;? ? ? ? int right = 2 * i + 2;? ? ? ? int largest = i;? ? ? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? ? ? largest = left;? ? ? ? }? ? ? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? ? ? largest = right;? ? ? ? }? ? ? ? if (largest != i) {? ? ? ? ? ? swap(arr, i, largest);? ? ? ? ? ? heapify(arr, largest, len);? ? ? ? }? ? }? ? private void swap(int[] arr, int i, int j) {? ? ? ? int temp = arr[i];? ? ? ? arr[i] = arr[j];? ? ? ? arr[j] = temp;? ? }}PHP 實例 function buildMaxHeap(&$arr){? ? global $len;? ? for ($i = floor($len/2); $i >= 0; $i--) {? ? ? ? heapify($arr, $i);? ? }}function heapify(&$arr, $i){? ? global $len;? ? $left = 2 * $i + 1;? ? $right = 2 * $i + 2;? ? $largest = $i;? ? if ($left < $len && $arr[$left] > $arr[$largest]) {? ? ? ? $largest = $left;? ? }? ? if ($right < $len && $arr[$right] > $arr[$largest]) {? ? ? ? $largest = $right;? ? }? ? if ($largest != $i) {? ? ? ? swap($arr, $i, $largest);? ? ? ? heapify($arr, $largest);? ? }}function swap(&$arr, $i, $j){? ? $temp = $arr[$i];? ? $arr[$i] = $arr[$j];? ? $arr[$j] = $temp;}function heapSort($arr) {? ? global $len;? ? $len = count($arr);? ? buildMaxHeap($arr);? ? for ($i = count($arr) - 1; $i > 0; $i--) {? ? ? ? swap($arr, 0, $i);? ? ? ? $len--;? ? ? ? heapify($arr, 0);? ? }? ? return $arr;}C實例 #include #include void swap(int *a, int *b) {? ? int temp = *b;? ? *b = *a;? ? *a = temp;}void max_heapify(int arr[], int start, int end) {? ? // 建立父節點指標和子節點指標? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節點指標在範圍內才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) //如果父節點大於子節點代表調整完畢,直接跳出函數? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內容再繼續子節點和孫節點比較? ? ? ? ? ? swap(&arr[dad], &arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? int i;? ? // 初始化,i從最後一個父節點開始調整? ? for (i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個元素和已排好元素前一位做交換,再重新調整,直到排序完畢? ? for (i = len - 1; i > 0; i--) {? ? ? ? swap(&arr[0], &arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? int i;? ? for (i = 0; i < len; i++)? ? ? ? printf("%d ", arr[i]);? ? printf(" ");? ? return 0;}C++實例 #include #include using namespace std;void max_heapify(int arr[], int start, int end) {? ? // 建立父節點指標和子節點指標? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節點指標在範圍內才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節點大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) // 如果父節點大於子節點代表調整完畢,直接跳出函數? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內容再繼續子節點和孫節點比較? ? ? ? ? ? swap(arr[dad], arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? // 初始化,i從最後一個父節點開始調整? ? for (int i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個元素和已經排好的元素前一位做交換,再從新調整(剛調整的元素之前的元素),直到排序完畢? ? for (int i = len - 1; i > 0; i--) {? ? ? ? swap(arr[0], arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? for (int i = 0; i < len; i++)? ? ? ? cout << arr[i] << ' ';? ? cout << endl;? ? return 0;}

參考文章:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/7.heapSort.md

https://zh.wikipedia.org/wiki/%E5%A0%86%E6%8E%92%E5%BA%8F

以下是熱心網友對堆排序算法的補充,僅供參考:

熱心網友提供的補充1:

上方又沒些 C# 的堆排序,艾孜爾江補充如下:

/// 
/// 堆排序
/// 
/// 待排序數組
static void HeapSort(int[] arr)
{
    int vCount = arr.Length;
    int[] tempKey = new int[vCount + 1];
    // 元素索引從1開始
    for (int i = 0; i < vCount; i++)
    {
        tempKey[i + 1] = arr[i];
    }
    // 初始數據建堆(從含最后一個結點的子樹開始構建,依次向前,形成整個二叉堆)
    for (int i = vCount / 2; i >= 1; i--)
    {
        Restore(tempKey, i, vCount);
    }
    // 不斷輸出堆頂元素、重構堆,進行排序
    for (int i = vCount; i > 1; i--)
    {
        int temp = tempKey[i];
        tempKey[i] = tempKey[1];
        tempKey[1] = temp;
        Restore(tempKey, 1, i - 1);
    }
    //排序結果
    for (int i = 0; i < vCount; i++)
    {
        arr[i] = tempKey[i + 1];
    }
}
/// 
/// 二叉堆的重構(針對于已構建好的二叉堆首尾互換之后的重構)
/// 
/// 
/// 根結點j
/// 結點數
static void Restore(int[] arr, int rootNode, int nodeCount)
{
    while (rootNode <= nodeCount / 2) // 保證根結點有子樹
    {
        //找出左右兒子的最大值
        int m = (2 * rootNode + 1 <= nodeCount && arr[2 * rootNode + 1] > arr[2 * rootNode]) ? 2 * rootNode + 1 : 2 * rootNode;
        if (arr[m] > arr[rootNode])
        {
            int temp = arr[m];
            arr[m] = arr[rootNode];
            arr[rootNode] = temp;
            rootNode = m;
        }
        else
        {
            break;
        }
    }
}

熱心網友提供的補充2:

堆排序是不穩定的排序!

既然如此,每次構建大頂堆時,在 父節點、左子節點、右子節點取三者中最大者作為父節點就行。我們追尋的只是最終排序后的結果,所以可以簡化其中的步驟。

我將個人寫的 Java 代碼核心放在下方,有興趣的同學可以一起討論下:

public int[] sort(int a[]) {
    int len = a.length - 1;    
    for (int i = len; i > 0; i--) {
        maxHeap(a, i);        
        //交換 跟節點root 與 最后一個子節點i 的位置        
        swap(a, 0, i);        
        //i--無序數組尺寸減少了 
    }  
    return a;
}

/**構建一個大頂堆(完全二叉樹 ) 
* 從  最后一個非葉子節點  開始,若父節點小于子節點,則互換他們兩的位置。然后依次從右至左,從下到上進行! 
* 最后一個非葉子節點,它的葉子節點 必定包括了最后一個(葉子)節點,所以 最后一個非葉子節點是 a[(n+1)/2-1] 
 
* @param a 
* @param lastIndex 這個數組的最后一個元素 
*/
static void maxHeap(int a[], int lastIndex) {
    for (int i = (lastIndex + 1) / 2 - 1; i >= 0; i--) {
       //反正 堆排序不穩定,先比較父與左子,大則交換;與右子同理。(不care 左子與右子位置是否變了!) 
        if (i * 2 + 1 <= lastIndex && a[i] < a[i * 2 + 1]) {
            swap(a, i, i * 2 + 1);        
        }    
        if (i * 2 + 2 <= lastIndex && a[i] < a[i * 2 + 2]) {
            swap(a, i, i * 2 + 2);        
        }
    }
}

private void swap(int[] arr, int i, int j) {
    int temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}
以上為堆排序算法詳細介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等排序算法各有優缺點,用一張圖概括:

關于時間復雜度

平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。

線性對數階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數。 希爾排序

線性階 (O(n)) 排序 基數排序,此外還有桶、箱排序。

關于穩定性

穩定的排序算法:冒泡排序、插入排序、歸并排序和基數排序。

不是穩定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

名詞解釋:

n:數據規模

k:"桶"的個數

In-place:占用常數內存,不占用額外內存

Out-place:占用額外內存

穩定性:排序后 2 個相等鍵值的順序和排序之前它們的順序相同

文檔

堆是一種什么排序方法

堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆積是一個近似完全二叉樹的結構,并同時滿足堆積的性質:即子結點的鍵值或索引總是小于(或者大于)它的父節點。堆排序可以說是一種利用堆的概念來排序的選擇排序。
推薦度:
為你推薦
資訊專欄
熱門視頻
相關推薦
實現歸并排序利用的算法 希爾排序c 排序算法的一般選擇規則 冒泡排序流程圖 堆排序計算 歸并排序算法流程圖解 數據結構希爾排序c語言 選擇排序算法例子 冒泡排序c語言 堆排序算法c語言 歸并排序算法原理 希爾排序又叫什么名字 選擇排序思想 java冒泡排序 堆排序c語言代碼 歸并排序思路 希爾排序c語言 選擇排序法原理 編寫一個冒泡排序算法 用c語言實現堆排序算法 降序排序冒泡排序優化 什么是選擇排序法 數據結構希爾排序流程圖 歸并排序算法c語言 快速排序算法原理 堆排序是穩定的排序算法 桶排序java 冒泡排序法的基本思路 c語言選擇排序從小到大 希爾排序法是怎么排的 歸并排序怎么排 快速排序怎么排 堆排序思想 c語言桶式排序 冒泡法排序c語言編寫 選擇排序發 希爾排序代碼實現 歸并排序算法詳解 快速排序的詳細過程 堆排序代碼數據結構
Top 国产精品亚洲AV三区_国产精品日本一区二区在线播放_国产成人无码久久久精品一_性感美女视频在线观看免费精品
<strike id="cakm0"></strike>
  • <button id="cakm0"><dl id="cakm0"></dl></button>
  • <samp id="cakm0"><tbody id="cakm0"></tbody></samp>
    <samp id="cakm0"><pre id="cakm0"></pre></samp><ul id="cakm0"></ul>
    <strike id="cakm0"></strike>
    <li id="cakm0"></li>
  • <ul id="cakm0"></ul>
  • 激情五月***国产精品| 亚洲三级视频| 亚洲无限av看| 国产精品区一区二区三区| 国产一区二区三区四区hd| 国模套图日韩精品一区二区| 久久综合99re88久久爱| 亚洲精品视频免费在线观看| 欧美视频在线观看一区二区| 久久精品国产99国产精品澳门| 亚洲国产精品综合| 欧美小视频在线| 老司机午夜免费精品视频| 夜夜嗨一区二区三区| 一区二区三区在线视频播放| 中文av一区二区| 久久久久综合一区二区三区| 亚洲国产精品久久久久秋霞不卡| 国产一区二区三区黄视频| 欧美黄色一区| 久久综合给合久久狠狠狠97色69| 亚洲视频免费在线| 猛干欧美女孩| 久久成人国产| 亚洲国产婷婷香蕉久久久久久| 国产乱码精品一区二区三区av| 免费亚洲电影在线观看| 久久久女女女女999久久| 亚洲你懂的在线视频| 一本色道久久88精品综合| 亚洲电影网站| 国产日韩精品视频一区二区三区| 欧美日韩成人在线| 免费日韩视频| 欧美吻胸吃奶大尺度电影| 农村妇女精品| 久久久精品2019中文字幕神马| 亚洲欧美成人一区二区三区| 亚洲经典一区| 亚洲国产综合在线看不卡| 男人的天堂亚洲| 欧美在线999| 性久久久久久| 久久精品视频在线| 久久理论片午夜琪琪电影网| 欧美在线国产| 精品成人在线视频| 欧美日韩国产精品一卡| 欧美成人免费va影院高清| 玖玖综合伊人| 欧美成人伊人久久综合网| 欧美电影在线观看完整版| 欧美精品色综合| 欧美午夜一区二区三区免费大片 | 在线播放中文一区| 国产一区二区av| 在线播放精品| 国产亚洲一区二区三区| 影音先锋中文字幕一区| 亚洲国产精品ⅴa在线观看| 亚洲三级免费观看| 亚洲欧美久久久| 久久久久久电影| 亚洲国产精品久久精品怡红院 | 国产精品国产三级国产aⅴ浪潮| 欧美日韩综合视频| 国产欧美日韩不卡| 亚洲电影免费观看高清| 欧美另类99xxxxx| 国产精品毛片va一区二区三区| 国产在线高清精品| 狠狠狠色丁香婷婷综合激情| 激情久久五月| 亚洲毛片在线观看| 国产精品美女在线| 欧美日韩dvd在线观看| 欧美色图天堂网| 狠狠爱成人网| 亚洲午夜精品一区二区三区他趣| 亚洲欧美日韩综合aⅴ视频| 亚洲经典视频在线观看| 在线视频亚洲一区| 久久嫩草精品久久久精品一| 欧美精品一区二区精品网| 国产亚洲aⅴaaaaaa毛片| 亚洲欧洲日本国产| 国内精品一区二区三区| 国产日韩欧美视频在线| 亚洲黄色性网站| 亚洲精品在线一区二区| 久久九九99| 欧美国产精品久久| 老司机凹凸av亚洲导航| 欧美久久久久免费| 激情视频一区二区| 中文精品在线| 久久久免费精品视频| 国产欧美1区2区3区| 一区二区三区你懂的| 久久天天躁狠狠躁夜夜av| 开元免费观看欧美电视剧网站| 欧美视频二区36p| 国产婷婷成人久久av免费高清| 99精品国产热久久91蜜凸| 欧美丰满高潮xxxx喷水动漫| 欧美三区免费完整视频在线观看| 在线电影国产精品| 99视频精品免费观看| 欧美国产日产韩国视频| 亚洲国产精品一区制服丝袜 | 国产精品成人国产乱一区| 欧美日本中文字幕| 亚洲精品在线视频观看| 欧美精品色一区二区三区| 亚洲精品在线观看免费| 裸体女人亚洲精品一区| 黑人一区二区| 老色批av在线精品| 亚洲肉体裸体xxxx137| 亚洲综合社区| 国产欧美91| 久久av在线| 亚洲欧洲精品一区二区三区不卡 | 国产日韩精品久久| 亚洲亚洲精品在线观看| 国产欧美一区二区三区国产幕精品 | 久久久久91| 亚洲乱码视频| 国产麻豆91精品| 另类激情亚洲| 亚洲在线中文字幕| 亚洲黄色免费电影| 国产日韩欧美三级| 欧美日韩亚洲综合一区| 99国产精品久久久久老师| 欧美特黄一级| 欧美成人午夜影院| 久久超碰97人人做人人爱| 99re亚洲国产精品| 国语自产在线不卡| 国产精品久久久一区二区| 嫩模写真一区二区三区三州| 亚洲全部视频| 国产欧美一区二区三区视频| 欧美精品系列| 欧美激情一区| 久久偷看各类wc女厕嘘嘘偷窃| 亚洲天堂激情| 一本色道88久久加勒比精品| 欧美日本国产| 欧美有码在线视频| 亚洲欧美精品伊人久久| 一区二区三区精品| 亚洲精品永久免费| 亚洲激情另类| 亚洲丰满在线| 在线观看欧美黄色| 在线观看av不卡| 国内成人精品一区| 国产日韩精品综合网站| 国产精品视频午夜| 国产精品久久久久91| 欧美色播在线播放| 欧美日韩亚洲天堂| 欧美日韩一区二区三区高清| 欧美国产综合视频| 欧美精品一区二区三区久久久竹菊| 免费视频一区| 欧美激情一区二区| 欧美极品欧美精品欧美视频| 欧美成人黑人xx视频免费观看| 久久一区二区三区四区五区| 久久亚洲欧美国产精品乐播| 毛片基地黄久久久久久天堂| 美女日韩欧美| 欧美电影免费观看| 欧美日韩免费看| 国产精品久在线观看| 国产丝袜一区二区三区| 黄色日韩网站| 亚洲美女91| 亚洲欧美高清| 狂野欧美激情性xxxx| 欧美精品福利视频| 久久av资源网站| 亚洲欧美激情诱惑| 久久九九国产| 欧美极品在线视频| 国产精品素人视频| 激情欧美一区二区三区在线观看| 在线精品亚洲一区二区| 日韩视频在线一区二区三区| 亚洲在线观看视频| 乱中年女人伦av一区二区| 欧美精品一区二区三| 国产精品美女xx| 91久久精品国产91性色tv| 一区二区欧美激情| 久久免费黄色| 国产精品美女一区二区在线观看|