<strike id="cakm0"></strike>
  • <button id="cakm0"><dl id="cakm0"></dl></button>
  • <samp id="cakm0"><tbody id="cakm0"></tbody></samp>
    <samp id="cakm0"><pre id="cakm0"></pre></samp><ul id="cakm0"></ul>
    <strike id="cakm0"></strike>
    <li id="cakm0"></li>
  • <ul id="cakm0"></ul>
  • 更多精彩內(nèi)容,歡迎關(guān)注:

    視頻號(hào)
    視頻號(hào)

    抖音
    抖音

    快手
    快手

    微博
    微博

    堆是一種什么排序方法

    文檔

    堆是一種什么排序方法

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹(shù)的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說(shuō)是一種利用堆的概念來(lái)排序的選擇排序。
    推薦度:
    導(dǎo)讀堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹(shù)的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說(shuō)是一種利用堆的概念來(lái)排序的選擇排序。
    .example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

    排序算法是《數(shù)據(jù)結(jié)構(gòu)與算法》中最基本的算法之一。排序算法可以分為內(nèi)部排序和外部排序,內(nèi)部排序是數(shù)據(jù)記錄在內(nèi)存中進(jìn)行排序,而外部排序是因排序的數(shù)據(jù)很大,一次不能容納全部的排序記錄,在排序過(guò)程中需要訪問(wèn)外存。常見(jiàn)的內(nèi)部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等。以下是堆排序算法:

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹(shù)的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說(shuō)是一種利用堆的概念來(lái)排序的選擇排序。分為兩種方法:

    大頂堆:每個(gè)節(jié)點(diǎn)的值都大于或等于其子節(jié)點(diǎn)的值,在堆排序算法中用于升序排列;小頂堆:每個(gè)節(jié)點(diǎn)的值都小于或等于其子節(jié)點(diǎn)的值,在堆排序算法中用于降序排列;

    堆排序的平均時(shí)間復(fù)雜度為 Ο(nlogn)。

    1. 算法步驟

    創(chuàng)建一個(gè)堆 H[0……n-1];

    把堆首(最大值)和堆尾互換;

    把堆的尺寸縮小 1,并調(diào)用 shift_down(0),目的是把新的數(shù)組頂端數(shù)據(jù)調(diào)整到相應(yīng)位置;

    重復(fù)步驟 2,直到堆的尺寸為 1。

    2. 動(dòng)圖演示

    代碼實(shí)現(xiàn)JavaScript 實(shí)例 var len; ? ?// 因?yàn)槁暶鞯亩鄠€(gè)函數(shù)都需要數(shù)據(jù)長(zhǎng)度,所以把len設(shè)置成為全局變量function buildMaxHeap(arr) { ? // 建立大頂堆? ? len = arr.length;? ? for (var i = Math.floor(len/2); i >= 0; i--) {? ? ? ? heapify(arr, i);? ? }}function heapify(arr, i) { ? ? // 堆調(diào)整? ? var left = 2 * i + 1,? ? ? ? right = 2 * i + 2,? ? ? ? largest = i;? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? largest = left;? ? }? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? largest = right;? ? }? ? if (largest != i) {? ? ? ? swap(arr, i, largest);? ? ? ? heapify(arr, largest);? ? }}function swap(arr, i, j) {? ? var temp = arr[i];? ? arr[i] = arr[j];? ? arr[j] = temp;}function heapSort(arr) {? ? buildMaxHeap(arr);? ? for (var i = arr.length-1; i > 0; i--) {? ? ? ? swap(arr, 0, i);? ? ? ? len--;? ? ? ? heapify(arr, 0);? ? }? ? return arr;}Python實(shí)例 def buildMaxHeap(arr):? ? import math? ? for i in range(math.floor(len(arr)/2),-1,-1):? ? ? ? heapify(arr,i)def heapify(arr, i):? ? left = 2*i+1? ? right = 2*i+2? ? largest = i? ? if left < arrLen and arr[left] > arr[largest]:? ? ? ? largest = left? ? if right < arrLen and arr[right] > arr[largest]:? ? ? ? largest = right? ? if largest != i:? ? ? ? swap(arr, i, largest)? ? ? ? heapify(arr, largest)def swap(arr, i, j):? ? arr[i], arr[j] = arr[j], arr[i]def heapSort(arr):? ? global arrLen? ? arrLen = len(arr)? ? buildMaxHeap(arr)? ? for i in range(len(arr)-1,0,-1):? ? ? ? swap(arr,0,i)? ? ? ? arrLen -=1? ? ? ? heapify(arr, 0)? ? return arrGo實(shí)例 func heapSort(arr []int) []int {? ? ? ? arrLen := len(arr)? ? ? ? buildMaxHeap(arr, arrLen)? ? ? ? for i := arrLen - 1; i >= 0; i-- {? ? ? ? ? ? ? ? swap(arr, 0, i)? ? ? ? ? ? ? ? arrLen -= 1? ? ? ? ? ? ? ? heapify(arr, 0, arrLen)? ? ? ? }? ? ? ? return arr}func buildMaxHeap(arr []int, arrLen int) {? ? ? ? for i := arrLen / 2; i >= 0; i-- {? ? ? ? ? ? ? ? heapify(arr, i, arrLen)? ? ? ? }}func heapify(arr []int, i, arrLen int) {? ? ? ? left := 2*i + 1? ? ? ? right := 2*i + 2? ? ? ? largest := i? ? ? ? if left < arrLen && arr[left] > arr[largest] {? ? ? ? ? ? ? ? largest = left? ? ? ? }? ? ? ? if right < arrLen && arr[right] > arr[largest] {? ? ? ? ? ? ? ? largest = right? ? ? ? }? ? ? ? if largest != i {? ? ? ? ? ? ? ? swap(arr, i, largest)? ? ? ? ? ? ? ? heapify(arr, largest, arrLen)? ? ? ? }}func swap(arr []int, i, j int) {? ? ? ? arr[i], arr[j] = arr[j], arr[i]}Java實(shí)例 public class HeapSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對(duì) arr 進(jìn)行拷貝,不改變參數(shù)內(nèi)容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? int len = arr.length;? ? ? ? buildMaxHeap(arr, len);? ? ? ? for (int i = len - 1; i > 0; i--) {? ? ? ? ? ? swap(arr, 0, i);? ? ? ? ? ? len--;? ? ? ? ? ? heapify(arr, 0, len);? ? ? ? }? ? ? ? return arr;? ? }? ? private void buildMaxHeap(int[] arr, int len) {? ? ? ? for (int i = (int) Math.floor(len / 2); i >= 0; i--) {? ? ? ? ? ? heapify(arr, i, len);? ? ? ? }? ? }? ? private void heapify(int[] arr, int i, int len) {? ? ? ? int left = 2 * i + 1;? ? ? ? int right = 2 * i + 2;? ? ? ? int largest = i;? ? ? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? ? ? largest = left;? ? ? ? }? ? ? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? ? ? largest = right;? ? ? ? }? ? ? ? if (largest != i) {? ? ? ? ? ? swap(arr, i, largest);? ? ? ? ? ? heapify(arr, largest, len);? ? ? ? }? ? }? ? private void swap(int[] arr, int i, int j) {? ? ? ? int temp = arr[i];? ? ? ? arr[i] = arr[j];? ? ? ? arr[j] = temp;? ? }}PHP 實(shí)例 function buildMaxHeap(&$arr){? ? global $len;? ? for ($i = floor($len/2); $i >= 0; $i--) {? ? ? ? heapify($arr, $i);? ? }}function heapify(&$arr, $i){? ? global $len;? ? $left = 2 * $i + 1;? ? $right = 2 * $i + 2;? ? $largest = $i;? ? if ($left < $len && $arr[$left] > $arr[$largest]) {? ? ? ? $largest = $left;? ? }? ? if ($right < $len && $arr[$right] > $arr[$largest]) {? ? ? ? $largest = $right;? ? }? ? if ($largest != $i) {? ? ? ? swap($arr, $i, $largest);? ? ? ? heapify($arr, $largest);? ? }}function swap(&$arr, $i, $j){? ? $temp = $arr[$i];? ? $arr[$i] = $arr[$j];? ? $arr[$j] = $temp;}function heapSort($arr) {? ? global $len;? ? $len = count($arr);? ? buildMaxHeap($arr);? ? for ($i = count($arr) - 1; $i > 0; $i--) {? ? ? ? swap($arr, 0, $i);? ? ? ? $len--;? ? ? ? heapify($arr, 0);? ? }? ? return $arr;}C實(shí)例 #include #include void swap(int *a, int *b) {? ? int temp = *b;? ? *b = *a;? ? *a = temp;}void max_heapify(int arr[], int start, int end) {? ? // 建立父節(jié)點(diǎn)指標(biāo)和子節(jié)點(diǎn)指標(biāo)? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節(jié)點(diǎn)指標(biāo)在範(fàn)圍內(nèi)才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個(gè)子節(jié)點(diǎn)大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) //如果父節(jié)點(diǎn)大於子節(jié)點(diǎn)代表調(diào)整完畢,直接跳出函數(shù)? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內(nèi)容再繼續(xù)子節(jié)點(diǎn)和孫節(jié)點(diǎn)比較? ? ? ? ? ? swap(&arr[dad], &arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? int i;? ? // 初始化,i從最後一個(gè)父節(jié)點(diǎn)開(kāi)始調(diào)整? ? for (i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個(gè)元素和已排好元素前一位做交換,再重新調(diào)整,直到排序完畢? ? for (i = len - 1; i > 0; i--) {? ? ? ? swap(&arr[0], &arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? int i;? ? for (i = 0; i < len; i++)? ? ? ? printf("%d ", arr[i]);? ? printf(" ");? ? return 0;}C++實(shí)例 #include #include using namespace std;void max_heapify(int arr[], int start, int end) {? ? // 建立父節(jié)點(diǎn)指標(biāo)和子節(jié)點(diǎn)指標(biāo)? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節(jié)點(diǎn)指標(biāo)在範(fàn)圍內(nèi)才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個(gè)子節(jié)點(diǎn)大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) // 如果父節(jié)點(diǎn)大於子節(jié)點(diǎn)代表調(diào)整完畢,直接跳出函數(shù)? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內(nèi)容再繼續(xù)子節(jié)點(diǎn)和孫節(jié)點(diǎn)比較? ? ? ? ? ? swap(arr[dad], arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? // 初始化,i從最後一個(gè)父節(jié)點(diǎn)開(kāi)始調(diào)整? ? for (int i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個(gè)元素和已經(jīng)排好的元素前一位做交換,再?gòu)男抡{(diào)整(剛調(diào)整的元素之前的元素),直到排序完畢? ? for (int i = len - 1; i > 0; i--) {? ? ? ? swap(arr[0], arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? for (int i = 0; i < len; i++)? ? ? ? cout << arr[i] << ' ';? ? cout << endl;? ? return 0;}

    參考文章:

    https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/7.heapSort.md

    https://zh.wikipedia.org/wiki/%E5%A0%86%E6%8E%92%E5%BA%8F

    以下是熱心網(wǎng)友對(duì)堆排序算法的補(bǔ)充,僅供參考:

    熱心網(wǎng)友提供的補(bǔ)充1:

    上方又沒(méi)些 C# 的堆排序,艾孜爾江補(bǔ)充如下:

    /// 
    /// 堆排序
    /// 
    /// 待排序數(shù)組
    static void HeapSort(int[] arr)
    {
        int vCount = arr.Length;
        int[] tempKey = new int[vCount + 1];
        // 元素索引從1開(kāi)始
        for (int i = 0; i < vCount; i++)
        {
            tempKey[i + 1] = arr[i];
        }
        // 初始數(shù)據(jù)建堆(從含最后一個(gè)結(jié)點(diǎn)的子樹(shù)開(kāi)始構(gòu)建,依次向前,形成整個(gè)二叉堆)
        for (int i = vCount / 2; i >= 1; i--)
        {
            Restore(tempKey, i, vCount);
        }
        // 不斷輸出堆頂元素、重構(gòu)堆,進(jìn)行排序
        for (int i = vCount; i > 1; i--)
        {
            int temp = tempKey[i];
            tempKey[i] = tempKey[1];
            tempKey[1] = temp;
            Restore(tempKey, 1, i - 1);
        }
        //排序結(jié)果
        for (int i = 0; i < vCount; i++)
        {
            arr[i] = tempKey[i + 1];
        }
    }
    /// 
    /// 二叉堆的重構(gòu)(針對(duì)于已構(gòu)建好的二叉堆首尾互換之后的重構(gòu))
    /// 
    /// 
    /// 根結(jié)點(diǎn)j
    /// 結(jié)點(diǎn)數(shù)
    static void Restore(int[] arr, int rootNode, int nodeCount)
    {
        while (rootNode <= nodeCount / 2) // 保證根結(jié)點(diǎn)有子樹(shù)
        {
            //找出左右兒子的最大值
            int m = (2 * rootNode + 1 <= nodeCount && arr[2 * rootNode + 1] > arr[2 * rootNode]) ? 2 * rootNode + 1 : 2 * rootNode;
            if (arr[m] > arr[rootNode])
            {
                int temp = arr[m];
                arr[m] = arr[rootNode];
                arr[rootNode] = temp;
                rootNode = m;
            }
            else
            {
                break;
            }
        }
    }

    熱心網(wǎng)友提供的補(bǔ)充2:

    堆排序是不穩(wěn)定的排序!

    既然如此,每次構(gòu)建大頂堆時(shí),在 父節(jié)點(diǎn)、左子節(jié)點(diǎn)、右子節(jié)點(diǎn)取三者中最大者作為父節(jié)點(diǎn)就行。我們追尋的只是最終排序后的結(jié)果,所以可以簡(jiǎn)化其中的步驟。

    我將個(gè)人寫(xiě)的 Java 代碼核心放在下方,有興趣的同學(xué)可以一起討論下:

    public int[] sort(int a[]) {
        int len = a.length - 1;    
        for (int i = len; i > 0; i--) {
            maxHeap(a, i);        
            //交換 跟節(jié)點(diǎn)root 與 最后一個(gè)子節(jié)點(diǎn)i 的位置        
            swap(a, 0, i);        
            //i--無(wú)序數(shù)組尺寸減少了 
        }  
        return a;
    }
    
    /**構(gòu)建一個(gè)大頂堆(完全二叉樹(shù) ) 
    * 從  最后一個(gè)非葉子節(jié)點(diǎn)  開(kāi)始,若父節(jié)點(diǎn)小于子節(jié)點(diǎn),則互換他們兩的位置。然后依次從右至左,從下到上進(jìn)行! 
    * 最后一個(gè)非葉子節(jié)點(diǎn),它的葉子節(jié)點(diǎn) 必定包括了最后一個(gè)(葉子)節(jié)點(diǎn),所以 最后一個(gè)非葉子節(jié)點(diǎn)是 a[(n+1)/2-1] 
     
    * @param a 
    * @param lastIndex 這個(gè)數(shù)組的最后一個(gè)元素 
    */
    static void maxHeap(int a[], int lastIndex) {
        for (int i = (lastIndex + 1) / 2 - 1; i >= 0; i--) {
           //反正 堆排序不穩(wěn)定,先比較父與左子,大則交換;與右子同理。(不care 左子與右子位置是否變了!) 
            if (i * 2 + 1 <= lastIndex && a[i] < a[i * 2 + 1]) {
                swap(a, i, i * 2 + 1);        
            }    
            if (i * 2 + 2 <= lastIndex && a[i] < a[i * 2 + 2]) {
                swap(a, i, i * 2 + 2);        
            }
        }
    }
    
    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
    
    以上為堆排序算法詳細(xì)介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等排序算法各有優(yōu)缺點(diǎn),用一張圖概括:

    關(guān)于時(shí)間復(fù)雜度

    平方階 (O(n2)) 排序 各類簡(jiǎn)單排序:直接插入、直接選擇和冒泡排序。

    線性對(duì)數(shù)階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

    O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數(shù)。 希爾排序

    線性階 (O(n)) 排序 基數(shù)排序,此外還有桶、箱排序。

    關(guān)于穩(wěn)定性

    穩(wěn)定的排序算法:冒泡排序、插入排序、歸并排序和基數(shù)排序。

    不是穩(wěn)定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

    名詞解釋:

    n:數(shù)據(jù)規(guī)模

    k:"桶"的個(gè)數(shù)

    In-place:占用常數(shù)內(nèi)存,不占用額外內(nèi)存

    Out-place:占用額外內(nèi)存

    穩(wěn)定性:排序后 2 個(gè)相等鍵值的順序和排序之前它們的順序相同

    文檔

    堆是一種什么排序方法

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹(shù)的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說(shuō)是一種利用堆的概念來(lái)排序的選擇排序。
    推薦度:
    為你推薦
    資訊專欄
    熱門視頻
    相關(guān)推薦
    實(shí)現(xiàn)歸并排序利用的算法 希爾排序c 排序算法的一般選擇規(guī)則 冒泡排序流程圖 堆排序計(jì)算 歸并排序算法流程圖解 數(shù)據(jù)結(jié)構(gòu)希爾排序c語(yǔ)言 選擇排序算法例子 冒泡排序c語(yǔ)言 堆排序算法c語(yǔ)言 歸并排序算法原理 希爾排序又叫什么名字 選擇排序思想 java冒泡排序 堆排序c語(yǔ)言代碼 歸并排序思路 希爾排序c語(yǔ)言 選擇排序法原理 編寫(xiě)一個(gè)冒泡排序算法 用c語(yǔ)言實(shí)現(xiàn)堆排序算法 降序排序冒泡排序優(yōu)化 什么是選擇排序法 數(shù)據(jù)結(jié)構(gòu)希爾排序流程圖 歸并排序算法c語(yǔ)言 快速排序算法原理 堆排序是穩(wěn)定的排序算法 桶排序java 冒泡排序法的基本思路 c語(yǔ)言選擇排序從小到大 希爾排序法是怎么排的 歸并排序怎么排 快速排序怎么排 堆排序思想 c語(yǔ)言桶式排序 冒泡法排序c語(yǔ)言編寫(xiě) 選擇排序發(fā) 希爾排序代碼實(shí)現(xiàn) 歸并排序算法詳解 快速排序的詳細(xì)過(guò)程 堆排序代碼數(shù)據(jù)結(jié)構(gòu)
    Top 久久久久久久久久免免费精品| 在线观看91精品国产入口| 911精品国产自产在线观看| 少妇人妻精品一区二区三区| 国产真实乱子伦精品视| 在线精品国产一区二区三区| 免费精品国产日韩热久久| 久久99国产精品久久99| 国产chinesehd精品酒店| 国产呦小j女精品视频| 国产精品成人亚洲| 国产精品久久久久久福利漫画| 日韩精品国产一区| 久久福利青草精品资源站免费| 国产成人精品免费视频大全五级| 亚洲精品视频在线观看免费 | 99re热久久精品这里都是精品| 亚洲第一永久AV网站久久精品男人的天堂AV | 精品韩国亚洲av无码不卡区| 真实国产乱子伦精品免费| 亚洲国产另类久久久精品小说 | 香蕉久久综合精品首页| 亚洲精品福利网泷泽萝拉| 亚洲人成精品久久久久| 国产亚洲精品美女2020久久| 国产亚洲精品影视在线| 99re视频精品全部免费| 国产精品久久久久jk制服| 国产精品女人在线观看| 国产精品揄拍一区二区久久| 99re在线精品视频免费| 国产成人精品手机在线观看| 中文字幕精品视频在线观看| 日韩精品视频在线观看免费| 亚洲午夜国产精品无卡| 囯产精品一品二区三区| 中文字幕日韩精品无码内射| 久久久精品久久久久久| 亚洲无码日韩精品第一页| 四虎影视精品永久免费网站| 国产精品成久久久久三级|