<strike id="cakm0"></strike>
  • <button id="cakm0"><dl id="cakm0"></dl></button>
  • <samp id="cakm0"><tbody id="cakm0"></tbody></samp>
    <samp id="cakm0"><pre id="cakm0"></pre></samp><ul id="cakm0"></ul>
    <strike id="cakm0"></strike>
    <li id="cakm0"></li>
  • <ul id="cakm0"></ul>
  • 更多精彩內(nèi)容,歡迎關(guān)注:

    視頻號
    視頻號

    抖音
    抖音

    快手
    快手

    微博
    微博

    歸并排序劃分子表

    文檔

    歸并排序劃分子表

    歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應(yīng)用。
    推薦度:
    導(dǎo)讀歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應(yīng)用。
    .example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

    排序算法是《數(shù)據(jù)結(jié)構(gòu)與算法》中最基本的算法之一。排序算法可以分為內(nèi)部排序和外部排序,內(nèi)部排序是數(shù)據(jù)記錄在內(nèi)存中進行排序,而外部排序是因排序的數(shù)據(jù)很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內(nèi)部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等。以下是歸并排序算法:

    歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應(yīng)用。

    作為一種典型的分而治之思想的算法應(yīng)用,歸并排序的實現(xiàn)由兩種方法:

    自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);自下而上的迭代;

    在《數(shù)據(jù)結(jié)構(gòu)與算法 JavaScript 描述》中,作者給出了自下而上的迭代方法。但是對于遞歸法,作者卻認(rèn)為:

    However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.

    然而,在 JavaScript 中這種方式不太可行,因為這個算法的遞歸深度對它來講太深了。

    說實話,我不太理解這句話。意思是 JavaScript 編譯器內(nèi)存太小,遞歸太深容易造成內(nèi)存溢出嗎?還望有大神能夠指教。

    和選擇排序一樣,歸并排序的性能不受輸入數(shù)據(jù)的影響,但表現(xiàn)比選擇排序好的多,因為始終都是 O(nlogn) 的時間復(fù)雜度。代價是需要額外的內(nèi)存空間。

    2. 算法步驟

    申請空間,使其大小為兩個已經(jīng)排序序列之和,該空間用來存放合并后的序列;

    設(shè)定兩個指針,最初位置分別為兩個已經(jīng)排序序列的起始位置;

    比較兩個指針?biāo)赶虻脑兀x擇相對小的元素放入到合并空間,并移動指針到下一位置;

    重復(fù)步驟 3 直到某一指針達到序列尾;

    將另一序列剩下的所有元素直接復(fù)制到合并序列尾。

    3. 動圖演示

    代碼實現(xiàn)JavaScript實例 function mergeSort(arr) { ?// 采用自上而下的遞歸方法? ? var len = arr.length;? ? if(len < 2) {? ? ? ? return arr;? ? }? ? var middle = Math.floor(len / 2),? ? ? ? left = arr.slice(0, middle),? ? ? ? right = arr.slice(middle);? ? return merge(mergeSort(left), mergeSort(right));}function merge(left, right){? ? var result = [];? ? while (left.length && right.length) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? result.push(left.shift());? ? ? ? } else {? ? ? ? ? ? result.push(right.shift());? ? ? ? }? ? }? ? while (left.length)? ? ? ? result.push(left.shift());? ? while (right.length)? ? ? ? result.push(right.shift());? ? return result;}Python實例 def mergeSort(arr):? ? import math? ? if(len(arr)<2):? ? ? ? return arr? ? middle = math.floor(len(arr)/2)? ? left, right = arr[0:middle], arr[middle:]? ? return merge(mergeSort(left), mergeSort(right))def merge(left,right):? ? result = []? ? while left and right:? ? ? ? if left[0] <= right[0]:? ? ? ? ? ? result.append(left.pop(0))? ? ? ? else:? ? ? ? ? ? result.append(right.pop(0));? ? while left:? ? ? ? result.append(left.pop(0))? ? while right:? ? ? ? result.append(right.pop(0));? ? return resultGo 實例 func mergeSort(arr []int) []int {? ? ? ? length := len(arr)? ? ? ? if length < 2 {? ? ? ? ? ? ? ? return arr? ? ? ? }? ? ? ? middle := length / 2? ? ? ? left := arr[0:middle]? ? ? ? right := arr[middle:]? ? ? ? return merge(mergeSort(left), mergeSort(right))}func merge(left []int, right []int) []int {? ? ? ? var result []int? ? ? ? for len(left) != 0 && len(right) != 0 {? ? ? ? ? ? ? ? if left[0] <= right[0] {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? ? ? ? ? left = left[1:]? ? ? ? ? ? ? ? } else {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? ? ? ? ? right = right[1:]? ? ? ? ? ? ? ? }? ? ? ? }? ? ? ? for len(left) != 0 {? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? left = left[1:]? ? ? ? }? ? ? ? for len(right) != 0 {? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? right = right[1:]? ? ? ? }? ? ? ? return result}Java實例 public class MergeSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對 arr 進行拷貝,不改變參數(shù)內(nèi)容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? if (arr.length < 2) {? ? ? ? ? ? return arr;? ? ? ? }? ? ? ? int middle = (int) Math.floor(arr.length / 2);? ? ? ? int[] left = Arrays.copyOfRange(arr, 0, middle);? ? ? ? int[] right = Arrays.copyOfRange(arr, middle, arr.length);? ? ? ? return merge(sort(left), sort(right));? ? }? ? protected int[] merge(int[] left, int[] right) {? ? ? ? int[] result = new int[left.length + right.length];? ? ? ? int i = 0;? ? ? ? while (left.length > 0 && right.length > 0) {? ? ? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? ? ? } else {? ? ? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? ? ? }? ? ? ? }? ? ? ? while (left.length > 0) {? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? }? ? ? ? while (right.length > 0) {? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? }? ? ? ? return result;? ? }}PHP實例 function mergeSort($arr){? ? $len = count($arr);? ? if ($len < 2) {? ? ? ? return $arr;? ? }? ? $middle = floor($len / 2);? ? $left = array_slice($arr, 0, $middle);? ? $right = array_slice($arr, $middle);? ? return merge(mergeSort($left), mergeSort($right));}function merge($left, $right){? ? $result = [];? ? while (count($left) > 0 && count($right) > 0) {? ? ? ? if ($left[0] <= $right[0]) {? ? ? ? ? ? $result[] = array_shift($left);? ? ? ? } else {? ? ? ? ? ? $result[] = array_shift($right);? ? ? ? }? ? }? ? while (count($left))? ? ? ? $result[] = array_shift($left);? ? while (count($right))? ? ? ? $result[] = array_shift($right);? ? return $result;}C實例 int min(int x, int y) {? ? return x < y ? x : y;}void merge_sort(int arr[], int len) {? ? int *a = arr;? ? int *b = (int *) malloc(len * sizeof(int));? ? int seg, start;? ? for (seg = 1; seg < len; seg += seg) {? ? ? ? for (start = 0; start < len; start += seg * 2) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? int *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? int i;? ? ? ? for (i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? free(b);}

    遞歸版:

    實例 void merge_sort_recursive(int arr[], int reg[], int start, int end) {? ? if (start >= end)? ? ? ? return;? ? int len = end - start, mid = (len >> 1) + start;? ? int start1 = start, end1 = mid;? ? int start2 = mid + 1, end2 = end;? ? merge_sort_recursive(arr, reg, start1, end1);? ? merge_sort_recursive(arr, reg, start2, end2);? ? int k = start;? ? while (start1 <= end1 && start2 <= end2)? ? ? ? reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];? ? while (start1 <= end1)? ? ? ? reg[k++] = arr[start1++];? ? while (start2 <= end2)? ? ? ? reg[k++] = arr[start2++];? ? for (k = start; k <= end; k++)? ? ? ? arr[k] = reg[k];}void merge_sort(int arr[], const int len) {? ? int reg[len];? ? merge_sort_recursive(arr, reg, 0, len - 1);}C++

    迭代版:

    實例 template // 整數(shù)或浮點數(shù)皆可使用,若要使用物件(class)時必須設(shè)定"小於"(<)的運算子功能void merge_sort(T arr[], int len) {? ? T *a = arr;? ? T *b = new T[len];? ? for (int seg = 1; seg < len; seg += seg) {? ? ? ? for (int start = 0; start < len; start += seg + seg) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? T *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? for (int i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? delete[] b;}

    遞歸版:

    實例 void Merge(vector &Array, int front, int mid, int end) {? ? // preconditions:? ? // Array[front...mid] is sorted? ? // Array[mid+1 ... end] is sorted? ? // Copy Array[front ... mid] to LeftSubArray? ? // Copy Array[mid+1 ... end] to RightSubArray? ? vector LeftSubArray(Array.begin() + front, Array.begin() + mid + 1);? ? vector RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1);? ? int idxLeft = 0, idxRight = 0;? ? LeftSubArray.insert(LeftSubArray.end(), numeric_limits::max());? ? RightSubArray.insert(RightSubArray.end(), numeric_limits::max());? ? // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i]? ? for (int i = front; i <= end; i++) {? ? ? ? if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) {? ? ? ? ? ? Array[i] = LeftSubArray[idxLeft];? ? ? ? ? ? idxLeft++;? ? ? ? } else {? ? ? ? ? ? Array[i] = RightSubArray[idxRight];? ? ? ? ? ? idxRight++;? ? ? ? }? ? }}void MergeSort(vector &Array, int front, int end) {? ? if (front >= end)? ? ? ? return;? ? int mid = (front + end) / 2;? ? MergeSort(Array, front, mid);? ? MergeSort(Array, mid + 1, end);? ? Merge(Array, front, mid, end);}C#實例 public static List sort(List lst) {? ? if (lst.Count <= 1)? ? ? ? return lst;? ? int mid = lst.Count / 2;? ? List left = new List(); ?// 定義左側(cè)List? ? List right = new List(); // 定義右側(cè)List? ? // 以下兩個循環(huán)把 lst 分為左右兩個 List? ? for (int i = 0; i < mid; i++)? ? ? ? left.Add(lst[i]);? ? for (int j = mid; j < lst.Count; j++)? ? ? ? right.Add(lst[j]);? ? left = sort(left);? ? right = sort(right);? ? return merge(left, right);}/// /// 合併兩個已經(jīng)排好序的List/// /// 左側(cè)List/// 右側(cè)List/// static List merge(List left, List right) {? ? List temp = new List();? ? while (left.Count > 0 && right.Count > 0) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? temp.Add(left[0]);? ? ? ? ? ? left.RemoveAt(0);? ? ? ? } else {? ? ? ? ? ? temp.Add(right[0]);? ? ? ? ? ? right.RemoveAt(0);? ? ? ? }? ? }? ? if (left.Count > 0) {? ? ? ? for (int i = 0; i < left.Count; i++)? ? ? ? ? ? temp.Add(left[i]);? ? }? ? if (right.Count > 0) {? ? ? ? for (int i = 0; i < right.Count; i++)? ? ? ? ? ? temp.Add(right[i]);? ? }? ? return temp;}Ruby實例 def merge list? return list if list.size < 2? pivot = list.size / 2? # Merge? lambda { |left, right|? ? final = []? ? until left.empty? or right.empty?? ? ? final << if left.first < right.first; left.shift else right.shift end? ? end? ? final + left + right? }.call merge(list[0...pivot]), merge(list[pivot..-1])end

    參考地址:

    https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/5.mergeSort.md

    https://zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F

    以下是熱心網(wǎng)友對歸并排序算法的補充,僅供參考:

    熱心網(wǎng)友提供的補充1:

    分而治之

    可以看到這種結(jié)構(gòu)很像一棵完全二叉樹,本文的歸并排序我們采用遞歸去實現(xiàn)(也可采用迭代的方式去實現(xiàn))。分階段可以理解為就是遞歸拆分子序列的過程,遞歸深度為log2n。

    合并相鄰有序子序列

    再來看看治階段,我們需要將兩個已經(jīng)有序的子序列合并成一個有序序列,比如上圖中的最后一次合并,要將[4,5,7,8]和[1,2,3,6]兩個已經(jīng)有序的子序列,合并為最終序列[1,2,3,4,5,6,7,8],來看下實現(xiàn)步驟。

    import java.util.Arrays;
    
    /**
     * Created by chengxiao on 2016/12/8.
     */
    public class MergeSort {
        public static void main(String []args){
            int []arr = {9,8,7,6,5,4,3,2,1};
            sort(arr);
            System.out.println(Arrays.toString(arr));
        }
        public static void sort(int []arr){
            int []temp = new int[arr.length];//在排序前,先建好一個長度等于原數(shù)組長度的臨時數(shù)組,避免遞歸中頻繁開辟空間
            sort(arr,0,arr.length-1,temp);
        }
        private static void sort(int[] arr,int left,int right,int []temp){
            if(left以上為歸并排序算法詳細介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等排序算法各有優(yōu)缺點,用一張圖概括: 

    關(guān)于時間復(fù)雜度

    平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。

    線性對數(shù)階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

    O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數(shù)。 希爾排序

    線性階 (O(n)) 排序 基數(shù)排序,此外還有桶、箱排序。

    關(guān)于穩(wěn)定性

    穩(wěn)定的排序算法:冒泡排序、插入排序、歸并排序和基數(shù)排序。

    不是穩(wěn)定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

    名詞解釋:

    n:數(shù)據(jù)規(guī)模

    k:"桶"的個數(shù)

    In-place:占用常數(shù)內(nèi)存,不占用額外內(nèi)存

    Out-place:占用額外內(nèi)存

    穩(wěn)定性:排序后 2 個相等鍵值的順序和排序之前它們的順序相同

    文檔

    歸并排序劃分子表

    歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應(yīng)用。
    推薦度:
    為你推薦
    資訊專欄
    熱門視頻
    相關(guān)推薦
    希爾排序算法思想 c語言選擇法排序10個數(shù) 用冒泡排序法求閏年 歸并排序的詳細過程 希爾排序c語言程序 c語言選擇排序算法 c語言冒泡排序10個數(shù) 歸并排序代碼 希爾排序法 選擇排序算法流程圖 冒泡排序的原理 歸并排序圖解 希爾排序例子 簡單選擇排序算法圖解 冒泡排序算法步驟 java歸并排序 希爾排序代碼怎么解釋 選擇排序法流程圖 冒泡排序流程圖表示 歸并排序原理 堆排序c語言 冒泡排序原理 直接選擇排序時間復(fù)雜度 希爾排序算法特點 歸并排序算法穩(wěn)定嗎 用c語言實現(xiàn)堆排序算法 編寫一個冒泡排序算法 選擇排序法原理 希爾排序c語言 歸并排序思路 堆排序c語言代碼 java冒泡排序 選擇排序思想 希爾排序又叫什么名字 歸并排序算法原理 堆排序算法c語言 冒泡排序c語言 選擇排序算法例子 數(shù)據(jù)結(jié)構(gòu)希爾排序c語言 歸并排序算法流程圖解
    Top 国内精品久久久久影院免费| 亚洲国产成人精品青青草原| 精品人人妻人人澡人人爽牛牛| 国产福利91精品一区二区| 国产精品亚洲高清一区二区| 国内精品一区二区三区东京| 亚洲精品乱码久久久久久中文字幕| 国产在线国偷精品产拍免费| 久久久精品2019中文字幕之3| 亚洲国产日产无码精品| 精品国精品国产自在久国产应用男 | 精品无码日韩一区二区三区不卡| 九九久久精品国产免费看小说| 精品久久久久久无码不卡| 久久精品隔壁老王影院| 国产精品无码久久久久| 日韩精品中文字幕无码专区| 亚洲精品免费在线| 亚洲国产精品无码成人片久久 | 日韩精品久久不卡中文字幕| 91精品视频播放| 亚洲国产精品无码久久久蜜芽 | 曰产无码久久久久久精品| 久久精品蜜芽亚洲国产AV| 国内精品无码一区二区三区| 538国产精品一区二区在线| 情侣视频精品免费的国产| 九九精品视频在线观看| 久久精品毛片免费观看| 久久亚洲精品成人| 国产亚洲美女精品久久久2020| 亚洲一级Av无码毛片久久精品 | 2019国产精品青青草原| 久久只有这里的精品69| 日韩精品成人一区二区三区| 国产午夜精品一区二区三区小说| 亚洲国产91精品无码专区| 色老成人精品视频在线观看| 精品国产日韩亚洲一区91 | 精品免费国产一区二区| 人妻少妇精品无码专区漫画|