国产精品亚洲AV三区_国产精品日本一区二区在线播放_国产成人无码久久久精品一_性感美女视频在线观看免费精品

更多精彩內容,歡迎關注:

視頻號
視頻號

抖音
抖音

快手
快手

微博
微博

歸并排序比較次數

文檔

歸并排序比較次數

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
推薦度:
導讀歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

排序算法是《數據結構與算法》中最基本的算法之一。排序算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等。以下是歸并排序算法:

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。

作為一種典型的分而治之思想的算法應用,歸并排序的實現由兩種方法:

自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);自下而上的迭代;

在《數據結構與算法 JavaScript 描述》中,作者給出了自下而上的迭代方法。但是對于遞歸法,作者卻認為:

However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.

然而,在 JavaScript 中這種方式不太可行,因為這個算法的遞歸深度對它來講太深了。

說實話,我不太理解這句話。意思是 JavaScript 編譯器內存太小,遞歸太深容易造成內存溢出嗎?還望有大神能夠指教。

和選擇排序一樣,歸并排序的性能不受輸入數據的影響,但表現比選擇排序好的多,因為始終都是 O(nlogn) 的時間復雜度。代價是需要額外的內存空間。

2. 算法步驟

申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合并后的序列;

設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;

比較兩個指針所指向的元素,選擇相對小的元素放入到合并空間,并移動指針到下一位置;

重復步驟 3 直到某一指針達到序列尾;

將另一序列剩下的所有元素直接復制到合并序列尾。

3. 動圖演示

代碼實現JavaScript實例 function mergeSort(arr) { ?// 采用自上而下的遞歸方法? ? var len = arr.length;? ? if(len < 2) {? ? ? ? return arr;? ? }? ? var middle = Math.floor(len / 2),? ? ? ? left = arr.slice(0, middle),? ? ? ? right = arr.slice(middle);? ? return merge(mergeSort(left), mergeSort(right));}function merge(left, right){? ? var result = [];? ? while (left.length && right.length) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? result.push(left.shift());? ? ? ? } else {? ? ? ? ? ? result.push(right.shift());? ? ? ? }? ? }? ? while (left.length)? ? ? ? result.push(left.shift());? ? while (right.length)? ? ? ? result.push(right.shift());? ? return result;}Python實例 def mergeSort(arr):? ? import math? ? if(len(arr)<2):? ? ? ? return arr? ? middle = math.floor(len(arr)/2)? ? left, right = arr[0:middle], arr[middle:]? ? return merge(mergeSort(left), mergeSort(right))def merge(left,right):? ? result = []? ? while left and right:? ? ? ? if left[0] <= right[0]:? ? ? ? ? ? result.append(left.pop(0))? ? ? ? else:? ? ? ? ? ? result.append(right.pop(0));? ? while left:? ? ? ? result.append(left.pop(0))? ? while right:? ? ? ? result.append(right.pop(0));? ? return resultGo 實例 func mergeSort(arr []int) []int {? ? ? ? length := len(arr)? ? ? ? if length < 2 {? ? ? ? ? ? ? ? return arr? ? ? ? }? ? ? ? middle := length / 2? ? ? ? left := arr[0:middle]? ? ? ? right := arr[middle:]? ? ? ? return merge(mergeSort(left), mergeSort(right))}func merge(left []int, right []int) []int {? ? ? ? var result []int? ? ? ? for len(left) != 0 && len(right) != 0 {? ? ? ? ? ? ? ? if left[0] <= right[0] {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? ? ? ? ? left = left[1:]? ? ? ? ? ? ? ? } else {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? ? ? ? ? right = right[1:]? ? ? ? ? ? ? ? }? ? ? ? }? ? ? ? for len(left) != 0 {? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? left = left[1:]? ? ? ? }? ? ? ? for len(right) != 0 {? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? right = right[1:]? ? ? ? }? ? ? ? return result}Java實例 public class MergeSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對 arr 進行拷貝,不改變參數內容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? if (arr.length < 2) {? ? ? ? ? ? return arr;? ? ? ? }? ? ? ? int middle = (int) Math.floor(arr.length / 2);? ? ? ? int[] left = Arrays.copyOfRange(arr, 0, middle);? ? ? ? int[] right = Arrays.copyOfRange(arr, middle, arr.length);? ? ? ? return merge(sort(left), sort(right));? ? }? ? protected int[] merge(int[] left, int[] right) {? ? ? ? int[] result = new int[left.length + right.length];? ? ? ? int i = 0;? ? ? ? while (left.length > 0 && right.length > 0) {? ? ? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? ? ? } else {? ? ? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? ? ? }? ? ? ? }? ? ? ? while (left.length > 0) {? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? }? ? ? ? while (right.length > 0) {? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? }? ? ? ? return result;? ? }}PHP實例 function mergeSort($arr){? ? $len = count($arr);? ? if ($len < 2) {? ? ? ? return $arr;? ? }? ? $middle = floor($len / 2);? ? $left = array_slice($arr, 0, $middle);? ? $right = array_slice($arr, $middle);? ? return merge(mergeSort($left), mergeSort($right));}function merge($left, $right){? ? $result = [];? ? while (count($left) > 0 && count($right) > 0) {? ? ? ? if ($left[0] <= $right[0]) {? ? ? ? ? ? $result[] = array_shift($left);? ? ? ? } else {? ? ? ? ? ? $result[] = array_shift($right);? ? ? ? }? ? }? ? while (count($left))? ? ? ? $result[] = array_shift($left);? ? while (count($right))? ? ? ? $result[] = array_shift($right);? ? return $result;}C實例 int min(int x, int y) {? ? return x < y ? x : y;}void merge_sort(int arr[], int len) {? ? int *a = arr;? ? int *b = (int *) malloc(len * sizeof(int));? ? int seg, start;? ? for (seg = 1; seg < len; seg += seg) {? ? ? ? for (start = 0; start < len; start += seg * 2) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? int *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? int i;? ? ? ? for (i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? free(b);}

遞歸版:

實例 void merge_sort_recursive(int arr[], int reg[], int start, int end) {? ? if (start >= end)? ? ? ? return;? ? int len = end - start, mid = (len >> 1) + start;? ? int start1 = start, end1 = mid;? ? int start2 = mid + 1, end2 = end;? ? merge_sort_recursive(arr, reg, start1, end1);? ? merge_sort_recursive(arr, reg, start2, end2);? ? int k = start;? ? while (start1 <= end1 && start2 <= end2)? ? ? ? reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];? ? while (start1 <= end1)? ? ? ? reg[k++] = arr[start1++];? ? while (start2 <= end2)? ? ? ? reg[k++] = arr[start2++];? ? for (k = start; k <= end; k++)? ? ? ? arr[k] = reg[k];}void merge_sort(int arr[], const int len) {? ? int reg[len];? ? merge_sort_recursive(arr, reg, 0, len - 1);}C++

迭代版:

實例 template // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能void merge_sort(T arr[], int len) {? ? T *a = arr;? ? T *b = new T[len];? ? for (int seg = 1; seg < len; seg += seg) {? ? ? ? for (int start = 0; start < len; start += seg + seg) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? T *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? for (int i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? delete[] b;}

遞歸版:

實例 void Merge(vector &Array, int front, int mid, int end) {? ? // preconditions:? ? // Array[front...mid] is sorted? ? // Array[mid+1 ... end] is sorted? ? // Copy Array[front ... mid] to LeftSubArray? ? // Copy Array[mid+1 ... end] to RightSubArray? ? vector LeftSubArray(Array.begin() + front, Array.begin() + mid + 1);? ? vector RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1);? ? int idxLeft = 0, idxRight = 0;? ? LeftSubArray.insert(LeftSubArray.end(), numeric_limits::max());? ? RightSubArray.insert(RightSubArray.end(), numeric_limits::max());? ? // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i]? ? for (int i = front; i <= end; i++) {? ? ? ? if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) {? ? ? ? ? ? Array[i] = LeftSubArray[idxLeft];? ? ? ? ? ? idxLeft++;? ? ? ? } else {? ? ? ? ? ? Array[i] = RightSubArray[idxRight];? ? ? ? ? ? idxRight++;? ? ? ? }? ? }}void MergeSort(vector &Array, int front, int end) {? ? if (front >= end)? ? ? ? return;? ? int mid = (front + end) / 2;? ? MergeSort(Array, front, mid);? ? MergeSort(Array, mid + 1, end);? ? Merge(Array, front, mid, end);}C#實例 public static List sort(List lst) {? ? if (lst.Count <= 1)? ? ? ? return lst;? ? int mid = lst.Count / 2;? ? List left = new List(); ?// 定義左側List? ? List right = new List(); // 定義右側List? ? // 以下兩個循環把 lst 分為左右兩個 List? ? for (int i = 0; i < mid; i++)? ? ? ? left.Add(lst[i]);? ? for (int j = mid; j < lst.Count; j++)? ? ? ? right.Add(lst[j]);? ? left = sort(left);? ? right = sort(right);? ? return merge(left, right);}/// /// 合併兩個已經排好序的List/// /// 左側List/// 右側List/// static List merge(List left, List right) {? ? List temp = new List();? ? while (left.Count > 0 && right.Count > 0) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? temp.Add(left[0]);? ? ? ? ? ? left.RemoveAt(0);? ? ? ? } else {? ? ? ? ? ? temp.Add(right[0]);? ? ? ? ? ? right.RemoveAt(0);? ? ? ? }? ? }? ? if (left.Count > 0) {? ? ? ? for (int i = 0; i < left.Count; i++)? ? ? ? ? ? temp.Add(left[i]);? ? }? ? if (right.Count > 0) {? ? ? ? for (int i = 0; i < right.Count; i++)? ? ? ? ? ? temp.Add(right[i]);? ? }? ? return temp;}Ruby實例 def merge list? return list if list.size < 2? pivot = list.size / 2? # Merge? lambda { |left, right|? ? final = []? ? until left.empty? or right.empty?? ? ? final << if left.first < right.first; left.shift else right.shift end? ? end? ? final + left + right? }.call merge(list[0...pivot]), merge(list[pivot..-1])end

參考地址:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/5.mergeSort.md

https://zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F

以下是熱心網友對歸并排序算法的補充,僅供參考:

熱心網友提供的補充1:

分而治之

可以看到這種結構很像一棵完全二叉樹,本文的歸并排序我們采用遞歸去實現(也可采用迭代的方式去實現)。分階段可以理解為就是遞歸拆分子序列的過程,遞歸深度為log2n。

合并相鄰有序子序列

再來看看治階段,我們需要將兩個已經有序的子序列合并成一個有序序列,比如上圖中的最后一次合并,要將[4,5,7,8]和[1,2,3,6]兩個已經有序的子序列,合并為最終序列[1,2,3,4,5,6,7,8],來看下實現步驟。

import java.util.Arrays;

/**
 * Created by chengxiao on 2016/12/8.
 */
public class MergeSort {
    public static void main(String []args){
        int []arr = {9,8,7,6,5,4,3,2,1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }
    public static void sort(int []arr){
        int []temp = new int[arr.length];//在排序前,先建好一個長度等于原數組長度的臨時數組,避免遞歸中頻繁開辟空間
        sort(arr,0,arr.length-1,temp);
    }
    private static void sort(int[] arr,int left,int right,int []temp){
        if(left以上為歸并排序算法詳細介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等排序算法各有優缺點,用一張圖概括: 

關于時間復雜度

平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。

線性對數階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數。 希爾排序

線性階 (O(n)) 排序 基數排序,此外還有桶、箱排序。

關于穩定性

穩定的排序算法:冒泡排序、插入排序、歸并排序和基數排序。

不是穩定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

名詞解釋:

n:數據規模

k:"桶"的個數

In-place:占用常數內存,不占用額外內存

Out-place:占用額外內存

穩定性:排序后 2 個相等鍵值的順序和排序之前它們的順序相同

文檔

歸并排序比較次數

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
推薦度:
為你推薦
資訊專欄
熱門視頻
相關推薦
希爾排序算法時間復雜度 直接選擇排序算法 基數排序算法思想 冒泡排序優化 桶排序的基本思想 計數排序的應用場景 堆排序是一種什么排序 java實現快速排序算法 歸并排序算法java 希爾排序的詳細過程 選擇排序法c語言 基數排序和桶排序 冒泡排序的改進算法 桶排序代碼 計數排序python 堆排序怎么建立初始堆 快速排序算法思路 外部排序歸并算法 希爾排序流程圖 選擇排序圖解 快速排序算法python 堆排序初始堆 什么是計數排序 桶排序算法c語言 冒泡排序代碼解讀 基數排序的詳細過程 選擇排序是穩定的嗎 希爾排序的算法過程 歸并排序算法過程圖解 實現快速排序算法 c語言數據結構堆排序算法 計數排序算法python 計數排序算法實例 桶排序算法的代碼 冒泡排序法例子 基數排序法 選擇排序c語言 希爾排序過程 歸并排序是穩定排序嗎 與動物有關的古詩
Top 国产精品亚洲AV三区_国产精品日本一区二区在线播放_国产成人无码久久久精品一_性感美女视频在线观看免费精品
<strike id="cakm0"></strike>
  • <button id="cakm0"><dl id="cakm0"></dl></button>
  • <samp id="cakm0"><tbody id="cakm0"></tbody></samp>
    <samp id="cakm0"><pre id="cakm0"></pre></samp><ul id="cakm0"></ul>
    <strike id="cakm0"></strike>
    <li id="cakm0"></li>
  • <ul id="cakm0"></ul>
  • 国产精品jizz在线观看美国| 亚洲午夜精品17c| 欧美激情综合| 亚欧美中日韩视频| 亚洲精品社区| 伊人狠狠色丁香综合尤物| 国产精品乱人伦中文| 欧美v国产在线一区二区三区| 亚洲欧美日韩在线观看a三区| 亚洲免费观看| 亚洲第一网站免费视频| 国产情侣久久| 国产欧美精品在线| 国产精品乱码妇女bbbb| 欧美亚州在线观看| 欧美日韩一区免费| 欧美色另类天堂2015| 欧美人成免费网站| 欧美日韩国产一区精品一区| 欧美大片免费| 欧美激情日韩| 欧美精品激情blacked18| 欧美aⅴ99久久黑人专区| 久久躁日日躁aaaaxxxx| 久久亚洲不卡| 欧美成人性网| 欧美精品18| 欧美午夜精品理论片a级按摩 | 欧美日本一区| 欧美极品色图| 欧美视频在线免费| 国产精品日韩一区| 国产欧美日韩亚洲一区二区三区| 国产精品综合色区在线观看| 国产一区美女| 91久久中文字幕| 日韩视频一区二区三区| 一区二区三区视频在线看| 亚洲婷婷综合色高清在线| 午夜亚洲一区| 久久久久网站| 欧美日韩精品一二三区| 国产精品免费aⅴ片在线观看| 国产乱码精品一区二区三区不卡| 韩国三级电影一区二区| 亚洲国产天堂久久国产91| 99国产精品| 久久99在线观看| 欧美国产日本| 国产伦精品一区二区三| 亚洲成人在线免费| 亚洲一区二区四区| 久久中文精品| 欧美三级视频在线播放| 国内精品久久久久久久果冻传媒| 亚洲欧洲日产国码二区| 欧美亚洲自偷自偷| 欧美欧美天天天天操| 国产欧美亚洲精品| 亚洲免费电影在线| 久久成人在线| 国产精品成人一区| 亚洲黄色在线看| 欧美在线观看日本一区| 欧美人成网站| 亚洲国产美女精品久久久久∴| 一区二区三区视频在线| 噜噜噜在线观看免费视频日韩| 国产精品国产三级国产aⅴ9色| 欲香欲色天天天综合和网| 亚洲男人天堂2024| 欧美激情导航| 亚洲激情视频在线| 久久男女视频| 国产一区二区欧美日韩| 亚洲综合大片69999| 欧美日韩国产三区| 亚洲精品护士| 欧美gay视频| 亚洲第一页自拍| 久久狠狠亚洲综合| 国产欧美视频一区二区| 一区二区三区国产精华| 欧美久久精品午夜青青大伊人| 在线不卡中文字幕播放| 久久不见久久见免费视频1| 国产精品福利网站| 中文在线一区| 欧美日韩蜜桃| 一本大道久久a久久精二百| 欧美大片一区| 亚洲激情婷婷| 欧美国产日韩一区二区在线观看 | 欧美一区午夜精品| 国产精品素人视频| 亚洲欧美日韩国产综合| 国产精品久久久久久久久久免费看| 一区二区日韩伦理片| 欧美视频中文字幕| 亚洲欧美日产图| 国产欧美不卡| 久久久久久久波多野高潮日日| 红桃视频国产精品| 欧美aⅴ99久久黑人专区| 亚洲精品看片| 国产精品国产三级国产a| 亚洲欧美日韩精品久久| 国产亚洲精品久久飘花 | 国产亚洲人成a一在线v站| 亚洲女爱视频在线| 好看不卡的中文字幕| 麻豆亚洲精品| 99在线视频精品| 国产精品亚洲аv天堂网| 久久国产精品网站| 亚洲国产日韩在线| 欧美性大战久久久久| 久久爱www久久做| 亚洲精品1234| 国产精品嫩草99av在线| 久久久久久久尹人综合网亚洲| 亚洲高清不卡在线观看| 欧美四级电影网站| 久久婷婷亚洲| 一区二区三区日韩精品视频| 韩日午夜在线资源一区二区| 欧美理论视频| 久久久久99| 亚洲尤物精选| 亚洲精品国产精品久久清纯直播| 国产精品v欧美精品v日本精品动漫| 欧美一区二区三区在线看| 亚洲黄色尤物视频| 国产区二精品视| 欧美精品一区二| 久久这里有精品15一区二区三区| 中日韩高清电影网| 在线日韩欧美视频| 国产欧美一区二区三区在线看蜜臀| 欧美大片免费| 老司机免费视频一区二区| 亚洲制服av| 日韩视频在线观看| 在线观看亚洲a| 国产欧美亚洲一区| 国产精品地址| 欧美精品一区三区在线观看| 久久久久久9| 欧美一区二区成人| 亚洲综合色丁香婷婷六月图片| 91久久精品国产91性色tv| 国产一区二区你懂的| 国产精品男人爽免费视频1| 欧美激情精品久久久久| 久久人人精品| 久久人人爽人人爽| 久久精品理论片| 久久精品国产2020观看福利| 欧美一级理论性理论a| 亚洲综合电影| 香蕉久久一区二区不卡无毒影院| 亚洲视频综合| 亚洲尤物影院| 欧美一区二区视频在线观看| 亚洲欧美日韩成人| 亚洲欧洲av一区二区三区久久| 亚洲婷婷在线| 午夜精品久久久久久久99热浪潮| 亚洲一区二区免费看| 亚洲一区二区在线看| 亚洲欧美日韩另类精品一区二区三区| 亚洲视频999| 欧美一级午夜免费电影| 国产精品一区二区男女羞羞无遮挡| 亚洲一区二区三区四区五区午夜| 亚洲精品乱码久久久久久日本蜜臀 | 国产一区免费视频| 国产一区二区三区在线观看精品| 国产欧美日韩在线| 韩国av一区二区三区四区| 影音先锋亚洲视频| 亚洲精品中文字幕在线观看| 99精品热视频| 午夜精品国产| 久久天堂av综合合色| 欧美成人国产| 欧美性猛交视频| 国产午夜精品美女视频明星a级| 韩国av一区二区| 亚洲精品影院| 性欧美在线看片a免费观看| 久久精品视频在线| 免费亚洲电影在线| 国产精品黄色在线观看| 国产一区二区三区精品欧美日韩一区二区三区 | 亚洲国产成人在线| 亚洲午夜黄色| 久久一日本道色综合久久| 欧美精品综合| 狠狠色伊人亚洲综合成人|