国产精品亚洲AV三区_国产精品日本一区二区在线播放_国产成人无码久久久精品一_性感美女视频在线观看免费精品

更多精彩內容,歡迎關注:

視頻號
視頻號

抖音
抖音

快手
快手

微博
微博

外部排序歸并算法

文檔

外部排序歸并算法

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
推薦度:
導讀歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
.example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

排序算法是《數據結構與算法》中最基本的算法之一。排序算法可以分為內部排序和外部排序,內部排序是數據記錄在內存中進行排序,而外部排序是因排序的數據很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等。以下是歸并排序算法:

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。

作為一種典型的分而治之思想的算法應用,歸并排序的實現由兩種方法:

自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);自下而上的迭代;

在《數據結構與算法 JavaScript 描述》中,作者給出了自下而上的迭代方法。但是對于遞歸法,作者卻認為:

However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.

然而,在 JavaScript 中這種方式不太可行,因為這個算法的遞歸深度對它來講太深了。

說實話,我不太理解這句話。意思是 JavaScript 編譯器內存太小,遞歸太深容易造成內存溢出嗎?還望有大神能夠指教。

和選擇排序一樣,歸并排序的性能不受輸入數據的影響,但表現比選擇排序好的多,因為始終都是 O(nlogn) 的時間復雜度。代價是需要額外的內存空間。

2. 算法步驟

申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合并后的序列;

設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;

比較兩個指針所指向的元素,選擇相對小的元素放入到合并空間,并移動指針到下一位置;

重復步驟 3 直到某一指針達到序列尾;

將另一序列剩下的所有元素直接復制到合并序列尾。

3. 動圖演示

代碼實現JavaScript實例 function mergeSort(arr) { ?// 采用自上而下的遞歸方法? ? var len = arr.length;? ? if(len < 2) {? ? ? ? return arr;? ? }? ? var middle = Math.floor(len / 2),? ? ? ? left = arr.slice(0, middle),? ? ? ? right = arr.slice(middle);? ? return merge(mergeSort(left), mergeSort(right));}function merge(left, right){? ? var result = [];? ? while (left.length && right.length) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? result.push(left.shift());? ? ? ? } else {? ? ? ? ? ? result.push(right.shift());? ? ? ? }? ? }? ? while (left.length)? ? ? ? result.push(left.shift());? ? while (right.length)? ? ? ? result.push(right.shift());? ? return result;}Python實例 def mergeSort(arr):? ? import math? ? if(len(arr)<2):? ? ? ? return arr? ? middle = math.floor(len(arr)/2)? ? left, right = arr[0:middle], arr[middle:]? ? return merge(mergeSort(left), mergeSort(right))def merge(left,right):? ? result = []? ? while left and right:? ? ? ? if left[0] <= right[0]:? ? ? ? ? ? result.append(left.pop(0))? ? ? ? else:? ? ? ? ? ? result.append(right.pop(0));? ? while left:? ? ? ? result.append(left.pop(0))? ? while right:? ? ? ? result.append(right.pop(0));? ? return resultGo 實例 func mergeSort(arr []int) []int {? ? ? ? length := len(arr)? ? ? ? if length < 2 {? ? ? ? ? ? ? ? return arr? ? ? ? }? ? ? ? middle := length / 2? ? ? ? left := arr[0:middle]? ? ? ? right := arr[middle:]? ? ? ? return merge(mergeSort(left), mergeSort(right))}func merge(left []int, right []int) []int {? ? ? ? var result []int? ? ? ? for len(left) != 0 && len(right) != 0 {? ? ? ? ? ? ? ? if left[0] <= right[0] {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? ? ? ? ? left = left[1:]? ? ? ? ? ? ? ? } else {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? ? ? ? ? right = right[1:]? ? ? ? ? ? ? ? }? ? ? ? }? ? ? ? for len(left) != 0 {? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? left = left[1:]? ? ? ? }? ? ? ? for len(right) != 0 {? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? right = right[1:]? ? ? ? }? ? ? ? return result}Java實例 public class MergeSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對 arr 進行拷貝,不改變參數內容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? if (arr.length < 2) {? ? ? ? ? ? return arr;? ? ? ? }? ? ? ? int middle = (int) Math.floor(arr.length / 2);? ? ? ? int[] left = Arrays.copyOfRange(arr, 0, middle);? ? ? ? int[] right = Arrays.copyOfRange(arr, middle, arr.length);? ? ? ? return merge(sort(left), sort(right));? ? }? ? protected int[] merge(int[] left, int[] right) {? ? ? ? int[] result = new int[left.length + right.length];? ? ? ? int i = 0;? ? ? ? while (left.length > 0 && right.length > 0) {? ? ? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? ? ? } else {? ? ? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? ? ? }? ? ? ? }? ? ? ? while (left.length > 0) {? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? }? ? ? ? while (right.length > 0) {? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? }? ? ? ? return result;? ? }}PHP實例 function mergeSort($arr){? ? $len = count($arr);? ? if ($len < 2) {? ? ? ? return $arr;? ? }? ? $middle = floor($len / 2);? ? $left = array_slice($arr, 0, $middle);? ? $right = array_slice($arr, $middle);? ? return merge(mergeSort($left), mergeSort($right));}function merge($left, $right){? ? $result = [];? ? while (count($left) > 0 && count($right) > 0) {? ? ? ? if ($left[0] <= $right[0]) {? ? ? ? ? ? $result[] = array_shift($left);? ? ? ? } else {? ? ? ? ? ? $result[] = array_shift($right);? ? ? ? }? ? }? ? while (count($left))? ? ? ? $result[] = array_shift($left);? ? while (count($right))? ? ? ? $result[] = array_shift($right);? ? return $result;}C實例 int min(int x, int y) {? ? return x < y ? x : y;}void merge_sort(int arr[], int len) {? ? int *a = arr;? ? int *b = (int *) malloc(len * sizeof(int));? ? int seg, start;? ? for (seg = 1; seg < len; seg += seg) {? ? ? ? for (start = 0; start < len; start += seg * 2) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? int *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? int i;? ? ? ? for (i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? free(b);}

遞歸版:

實例 void merge_sort_recursive(int arr[], int reg[], int start, int end) {? ? if (start >= end)? ? ? ? return;? ? int len = end - start, mid = (len >> 1) + start;? ? int start1 = start, end1 = mid;? ? int start2 = mid + 1, end2 = end;? ? merge_sort_recursive(arr, reg, start1, end1);? ? merge_sort_recursive(arr, reg, start2, end2);? ? int k = start;? ? while (start1 <= end1 && start2 <= end2)? ? ? ? reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];? ? while (start1 <= end1)? ? ? ? reg[k++] = arr[start1++];? ? while (start2 <= end2)? ? ? ? reg[k++] = arr[start2++];? ? for (k = start; k <= end; k++)? ? ? ? arr[k] = reg[k];}void merge_sort(int arr[], const int len) {? ? int reg[len];? ? merge_sort_recursive(arr, reg, 0, len - 1);}C++

迭代版:

實例 template // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能void merge_sort(T arr[], int len) {? ? T *a = arr;? ? T *b = new T[len];? ? for (int seg = 1; seg < len; seg += seg) {? ? ? ? for (int start = 0; start < len; start += seg + seg) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? T *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? for (int i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? delete[] b;}

遞歸版:

實例 void Merge(vector &Array, int front, int mid, int end) {? ? // preconditions:? ? // Array[front...mid] is sorted? ? // Array[mid+1 ... end] is sorted? ? // Copy Array[front ... mid] to LeftSubArray? ? // Copy Array[mid+1 ... end] to RightSubArray? ? vector LeftSubArray(Array.begin() + front, Array.begin() + mid + 1);? ? vector RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1);? ? int idxLeft = 0, idxRight = 0;? ? LeftSubArray.insert(LeftSubArray.end(), numeric_limits::max());? ? RightSubArray.insert(RightSubArray.end(), numeric_limits::max());? ? // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i]? ? for (int i = front; i <= end; i++) {? ? ? ? if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) {? ? ? ? ? ? Array[i] = LeftSubArray[idxLeft];? ? ? ? ? ? idxLeft++;? ? ? ? } else {? ? ? ? ? ? Array[i] = RightSubArray[idxRight];? ? ? ? ? ? idxRight++;? ? ? ? }? ? }}void MergeSort(vector &Array, int front, int end) {? ? if (front >= end)? ? ? ? return;? ? int mid = (front + end) / 2;? ? MergeSort(Array, front, mid);? ? MergeSort(Array, mid + 1, end);? ? Merge(Array, front, mid, end);}C#實例 public static List sort(List lst) {? ? if (lst.Count <= 1)? ? ? ? return lst;? ? int mid = lst.Count / 2;? ? List left = new List(); ?// 定義左側List? ? List right = new List(); // 定義右側List? ? // 以下兩個循環把 lst 分為左右兩個 List? ? for (int i = 0; i < mid; i++)? ? ? ? left.Add(lst[i]);? ? for (int j = mid; j < lst.Count; j++)? ? ? ? right.Add(lst[j]);? ? left = sort(left);? ? right = sort(right);? ? return merge(left, right);}/// /// 合併兩個已經排好序的List/// /// 左側List/// 右側List/// static List merge(List left, List right) {? ? List temp = new List();? ? while (left.Count > 0 && right.Count > 0) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? temp.Add(left[0]);? ? ? ? ? ? left.RemoveAt(0);? ? ? ? } else {? ? ? ? ? ? temp.Add(right[0]);? ? ? ? ? ? right.RemoveAt(0);? ? ? ? }? ? }? ? if (left.Count > 0) {? ? ? ? for (int i = 0; i < left.Count; i++)? ? ? ? ? ? temp.Add(left[i]);? ? }? ? if (right.Count > 0) {? ? ? ? for (int i = 0; i < right.Count; i++)? ? ? ? ? ? temp.Add(right[i]);? ? }? ? return temp;}Ruby實例 def merge list? return list if list.size < 2? pivot = list.size / 2? # Merge? lambda { |left, right|? ? final = []? ? until left.empty? or right.empty?? ? ? final << if left.first < right.first; left.shift else right.shift end? ? end? ? final + left + right? }.call merge(list[0...pivot]), merge(list[pivot..-1])end

參考地址:

https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/5.mergeSort.md

https://zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F

以下是熱心網友對歸并排序算法的補充,僅供參考:

熱心網友提供的補充1:

分而治之

可以看到這種結構很像一棵完全二叉樹,本文的歸并排序我們采用遞歸去實現(也可采用迭代的方式去實現)。分階段可以理解為就是遞歸拆分子序列的過程,遞歸深度為log2n。

合并相鄰有序子序列

再來看看治階段,我們需要將兩個已經有序的子序列合并成一個有序序列,比如上圖中的最后一次合并,要將[4,5,7,8]和[1,2,3,6]兩個已經有序的子序列,合并為最終序列[1,2,3,4,5,6,7,8],來看下實現步驟。

import java.util.Arrays;

/**
 * Created by chengxiao on 2016/12/8.
 */
public class MergeSort {
    public static void main(String []args){
        int []arr = {9,8,7,6,5,4,3,2,1};
        sort(arr);
        System.out.println(Arrays.toString(arr));
    }
    public static void sort(int []arr){
        int []temp = new int[arr.length];//在排序前,先建好一個長度等于原數組長度的臨時數組,避免遞歸中頻繁開辟空間
        sort(arr,0,arr.length-1,temp);
    }
    private static void sort(int[] arr,int left,int right,int []temp){
        if(left以上為歸并排序算法詳細介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數排序等排序算法各有優缺點,用一張圖概括: 

關于時間復雜度

平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。

線性對數階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數。 希爾排序

線性階 (O(n)) 排序 基數排序,此外還有桶、箱排序。

關于穩定性

穩定的排序算法:冒泡排序、插入排序、歸并排序和基數排序。

不是穩定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

名詞解釋:

n:數據規模

k:"桶"的個數

In-place:占用常數內存,不占用額外內存

Out-place:占用額外內存

穩定性:排序后 2 個相等鍵值的順序和排序之前它們的順序相同

文檔

外部排序歸并算法

歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應用。
推薦度:
為你推薦
資訊專欄
熱門視頻
相關推薦
希爾排序流程圖 選擇排序圖解 基數排序算法c語言 冒泡排序圖解算法 排序算法桶排 計數排序java 堆排序的初始堆 java快速排序算法代碼 歸并排序定義 希爾排序過程圖解 選擇排序算法代碼 基數排序是什么 冒泡排序怎么優化 桶排序算法原理 計數排序基本原理 堆排序法 快速排序算法c 歸并排序算法的分治方法 希爾排序c語言實現 選擇排序過程 快速排序算法思路 堆排序怎么建立初始堆 計數排序python 桶排序代碼 冒泡排序的改進算法 基數排序和桶排序 選擇排序法c語言 希爾排序的詳細過程 歸并排序算法java java實現快速排序算法 堆排序是一種什么排序 計數排序的應用場景 桶排序的基本思想 冒泡排序優化 基數排序算法思想 直接選擇排序算法 希爾排序算法時間復雜度 歸并排序比較次數 快速排序算法python 堆排序初始堆
Top 国产精品亚洲AV三区_国产精品日本一区二区在线播放_国产成人无码久久久精品一_性感美女视频在线观看免费精品
<strike id="cakm0"></strike>
  • <button id="cakm0"><dl id="cakm0"></dl></button>
  • <samp id="cakm0"><tbody id="cakm0"></tbody></samp>
    <samp id="cakm0"><pre id="cakm0"></pre></samp><ul id="cakm0"></ul>
    <strike id="cakm0"></strike>
    <li id="cakm0"></li>
  • <ul id="cakm0"></ul>
  • 亚洲视频你懂的| 亚洲视频第一页| 亚洲电影免费观看高清| 亚洲国产美国国产综合一区二区| 在线日韩电影| 99精品视频免费在线观看| 亚洲欧美另类在线| 免费av成人在线| 国产精品草草| 韩国精品在线观看| 日韩视频―中文字幕| 午夜日韩视频| 欧美欧美天天天天操| 国产精品欧美风情| 亚洲国产精品国自产拍av秋霞| 夜夜嗨一区二区| 久久久亚洲人| 欧美亚州一区二区三区 | 亚洲精品免费电影| 香蕉久久夜色精品国产| 欧美激情视频一区二区三区免费| 国产精品久久久91| 91久久精品一区| 久久精品一区四区| 国产精品视频大全| 99视频精品在线| 免费日本视频一区| 国产日韩在线看| 亚洲性视频网站| 欧美激情日韩| 亚洲国产免费| 久久亚洲精品欧美| 国产日韩欧美三级| 午夜精品美女自拍福到在线 | 欧美国产一区二区| 国产一区二区三区在线免费观看| 日韩视频在线一区二区三区| 久久久久久亚洲精品不卡4k岛国| 欧美色欧美亚洲另类七区| 1204国产成人精品视频| 欧美在线视频免费播放| 国产毛片一区二区| 亚洲欧美在线一区| 国产精品久久久一区麻豆最新章节| 亚洲国内精品| 美女日韩在线中文字幕| 一区二区三区在线看| 亚洲欧美偷拍卡通变态| 国产精品蜜臀在线观看| 亚洲视频在线观看视频| 欧美日韩一区二区三区在线| 亚洲欧洲久久| 欧美精品在线极品| 亚洲精选一区| 欧美三区在线视频| 亚洲一区免费| 国产欧美一区二区三区视频| 小处雏高清一区二区三区| 国产老女人精品毛片久久| 小嫩嫩精品导航| 国产在线观看一区| 老巨人导航500精品| 亚洲国产日韩一级| 欧美国产日韩一区| 一本色道久久综合亚洲精品不| 欧美连裤袜在线视频| 亚洲网站在线看| 国产欧美日韩视频在线观看| 亚洲欧美在线一区二区| 国内成人自拍视频| 欧美岛国激情| 亚洲女人av| 国内免费精品永久在线视频| 免费观看成人www动漫视频| 亚洲日本中文字幕免费在线不卡| 欧美日韩一区自拍| 午夜欧美大尺度福利影院在线看| 国内精品久久久久影院优| 欧美福利视频| 亚洲欧美日韩国产一区| 在线精品福利| 欧美午夜片欧美片在线观看| 欧美在线免费播放| 最新成人在线| 国产午夜一区二区三区| 欧美国产日韩一区| 欧美一区二区三区四区夜夜大片 | 欧美精品高清视频| 亚洲欧美文学| 亚洲精品国产精品久久清纯直播| 国产精品swag| 欧美成人网在线| 性视频1819p久久| 亚洲精品在线二区| 国产午夜一区二区三区| 欧美日韩免费| 麻豆精品视频在线| 午夜在线精品偷拍| 一区二区电影免费在线观看| 国产在线视频欧美一区二区三区| 欧美精品在线极品| 久久综合中文色婷婷| 亚洲免费影院| 亚洲视频在线免费观看| 亚洲高清在线观看| 韩日精品中文字幕| 国产九色精品成人porny| 欧美福利视频一区| 久久婷婷麻豆| 香蕉久久夜色精品国产| 在线一区二区日韩| 亚洲精品亚洲人成人网| 亚洲国产二区| 激情亚洲成人| 国产一区再线| 国产一区二区三区在线免费观看| 国产精品hd| 欧美私人啪啪vps| 欧美日韩福利视频| 欧美精品v日韩精品v韩国精品v| 久久久精品国产免大香伊| 欧美一区二区高清| 午夜伦理片一区| 午夜欧美理论片| 欧美在线日韩在线| 久久国产精品久久精品国产| 香蕉久久久久久久av网站| 午夜精品视频在线| 午夜精品国产精品大乳美女| 亚洲免费在线精品一区| 亚洲一区二区毛片| 亚洲欧美在线网| 欧美尤物巨大精品爽| 欧美一区二区视频观看视频| 欧美一区二区| 久久久天天操| 欧美黄色视屏| 欧美视频一区二区在线观看| 欧美日韩综合视频| 国产精品美女主播| 国产日韩在线看片| 在线成人激情| 日韩亚洲欧美一区| 亚洲男人av电影| 久久国产综合精品| 欧美va天堂在线| 欧美色图一区二区三区| 国产精品美女在线| 激情婷婷欧美| 最新日韩中文字幕| 亚洲性线免费观看视频成熟| 欧美一区二视频| 免费欧美高清视频| 国产精品xvideos88| 国产一区二区三区高清播放| 亚洲国产成人91精品| 夜夜狂射影院欧美极品| 欧美一级大片在线免费观看| 久久精品在线视频| 欧美日韩成人综合在线一区二区| 欧美日韩视频一区二区| 国产日产亚洲精品| 亚洲精品日产精品乱码不卡| 亚洲在线成人| 美女福利精品视频| 国产精品美女久久久久av超清| 国产一区二区三区在线观看视频 | 午夜一区二区三区不卡视频| 久久久亚洲欧洲日产国码αv| 欧美理论大片| 国产自产在线视频一区| 一本色道久久综合亚洲精品婷婷| 欧美在线观看www| 欧美日韩国产成人高清视频| 国产午夜亚洲精品不卡| av成人激情| 美日韩免费视频| 国产婷婷色一区二区三区| 一区二区国产精品| 免费观看成人| 国产在线乱码一区二区三区| 一本高清dvd不卡在线观看| 久久蜜桃香蕉精品一区二区三区| 欧美午夜免费影院| 亚洲精品无人区| 久久久亚洲欧洲日产国码αv | 国产精品www网站| 亚洲国产乱码最新视频| 久久久久久久成人| 国产日韩精品久久| 亚洲女人天堂成人av在线| 欧美日韩成人免费| 亚洲人成人一区二区在线观看| 久久精品国产精品| 国产精品综合久久久| 亚洲视频自拍偷拍| 欧美色综合天天久久综合精品| 亚洲国产婷婷香蕉久久久久久99 | 亚洲国产精品黑人久久久| 久久av最新网址|