<strike id="cakm0"></strike>
  • <button id="cakm0"><dl id="cakm0"></dl></button>
  • <samp id="cakm0"><tbody id="cakm0"></tbody></samp>
    <samp id="cakm0"><pre id="cakm0"></pre></samp><ul id="cakm0"></ul>
    <strike id="cakm0"></strike>
    <li id="cakm0"></li>
  • <ul id="cakm0"></ul>
  • 更多精彩內容,歡迎關注:

    視頻號
    視頻號

    抖音
    抖音

    快手
    快手

    微博
    微博

    groupby java

    文檔

    groupby java

    groupby的作用是通過一定的規則將一個數據集劃分成若干個小的區域,然后針對若干個小區域進行數據處理,groupby核心用法是利用本身的某一列或多列內容進行分組聚合。
    推薦度:
    導讀groupby的作用是通過一定的規則將一個數據集劃分成若干個小的區域,然后針對若干個小區域進行數據處理,groupby核心用法是利用本身的某一列或多列內容進行分組聚合。

    groupby java是什么,讓我們一起了解一下?

    groupby的作用是通過一定的規則將一個數據集劃分成若干個小的區域,然后針對若干個小區域進行數據處理,groupby核心用法是利用本身的某一列或多列內容進行分組聚合。

    groupby的核心用法:

    (1)根據DataFrame本身的某一列或多列內容進行分組聚合,(a)若按某一列聚合,則新DataFrame將根據某一列的內容分為不同的維度進行拆解,同時將同一維度的再進行聚合,(b)若按某多列聚合,則新DataFrame將是多列之間維度的笛卡爾積,即:新DataFrame具有一個層次化索引(由唯一的鍵對組成),例如:“key1”列,有a和b兩個維度,而“key2”有one和two兩個維度,則按“key1”列和“key2”聚合之后,新DataFrame將有四個group;

    注意:groupby默認是在axis=0上進行分組的,通過設置axis=1,也可以在其他任何軸上進行分組。

    (2)groupby,根據分組鍵的不同,有以下4種聚合方法:

    1、分組鍵為Series。

    (a)使用原df的子列作為Series。

    df.groupby([ df[‘key1’], df[‘key2’] ]).mean()

    (b)使用自定義的Series。

    mapping={‘a’:‘red’,‘b’:‘red’,‘c’:‘blue’,‘d’:‘blue’,‘e’:‘red’,‘f’:‘orange’}

    map_series=pd.Series(mapping)

    people.groupby(map_series,axis=1).count()

    2、分組鍵為列名。

    df.groupby([ ‘key1’,‘key2’ ]).mean()

    3、分組鍵為數組。

    states=np.array([‘Ohio’, ‘California’, ‘California’, ‘Ohio’, ‘Ohio’])

    years=np.array([2004,2005,2006,2005,2006]) #自定義數組

    df[‘data1’].groupby( [ states,years ] ).mean()

    4、分組鍵為字典。

    mapping={‘a’:‘red’,‘b’:‘red’,‘c’:‘blue’,‘d’:‘blue’,‘e’:‘red’,‘f’:‘orange’} #自定義字典。

    by_column=people.groupby(mapping,axis=1).sum() #指定axis=1,表示對列數據進行聚合分組。

    5、分組鍵為函數。

    例如:傳入len函數(可以求取一個字符串長度數組),實現根據字符串的長度進行分組。

    people.groupby(len).sum() #將字符串長度相同的行進行求和。

    5、分組鍵為函數和數組、列表、字典、Series的組合。

    引入列表list[ ] 將函數跟數組、列表、字典、Series混合使用作為分組鍵進行聚合,因為任何東西最終都會被轉換為數組。

    key_list=[‘one’,‘one’,‘one’,‘two’,‘two’] #自定義列表,默認列表順序和df的列順序一致。

    people.groupby([ len,key_list ]).min()

    6、分組鍵為具有多重列索引df 的列索引層次。

    hier_df.groupby(level=‘cty’,axis=1).count() #利用參數level,指明聚合的層級。

    代碼示例說明:

    將多個字段拼接成一個新字段,在使用Java8的groupBy進行分組。

    Map>?detailmap?=?details.stream()
    .collect(Collectors.groupingBy(d?->?fetchGroupKey(d)?));
    private?String?fetchGroupKey(EntryDeliveryDetailywk?detail){
    ????????return?detail.getSkuId().toString()?
    ????????+?detail.getItemsName()?
    ????????+?detail.getWarehouseId().toString()???
    ????????+?detail.getSupplierId().toString();
    ????}

    ?以上就是小編今天的分享了,希望可以幫助到大家。

    文檔

    groupby java

    groupby的作用是通過一定的規則將一個數據集劃分成若干個小的區域,然后針對若干個小區域進行數據處理,groupby核心用法是利用本身的某一列或多列內容進行分組聚合。
    推薦度:
    為你推薦
    資訊專欄
    熱門視頻
    相關推薦
    guava java hbase java hibernate java hotspot java idea創建java idea創建普通java項目 idea怎么建立java idea編寫java程序 influxdb java instance java instant java integer java interface java iterator java 鐵觀音產地是哪個地方 java -ea 南極洲有哪些國家 行程碼帶*號什么意思 祁連山在哪個省境內 idea新建java項目 grep java golang調用java glue java geojson java geohash java gdb java gdal java gateway java for循環java foreach java field java 愛奇藝黃金會員和星鉆會員的區別 false是java關鍵字嗎 extends java extend java excel讀取java enum java 小程序和app的區別 awesome java arrays java
    Top 久久久精品国产亚洲成人满18免费网站 | 精品三级AV无码一区| 国产精品成人网站| 精品人人妻人人澡人人爽人人| 亚洲日韩国产精品乱| 亚洲精品无码av片| 99久久99久久久99精品齐| 惠民福利中文字幕人妻无码乱精品| 亚洲精品第一国产综合亚AV| 久久99热精品免费观看牛牛 | 99久久99久久久99精品齐| 国产成人精品曰本亚洲79ren| 精品久久久无码人妻中文字幕豆芽| 亚洲国产精品成人精品无码区| 亚洲精品成人久久久| 午夜精品成人毛片| 2021国内精品久久久久久影院| 亚洲AV无码精品色午夜在线观看| 国产精品国产三级在线高清观看| 蜜桃精品免费久久久久影院| 99精品国产高清一区二区麻豆 | 日本精品在线观看视频| 国产精品爽爽va在线观看网站| 久久国产精品久久久久久| 久久久久国产精品麻豆AR影院 | 在线视频精品免费| 69国产成人综合久久精品91| 天天爽夜夜爽夜夜爽精品视频| 亚洲精品无码久久久久APP| 91精品一区二区综合在线| 亚洲av午夜福利精品一区人妖| 99精品视频在线观看免费| 亚洲国产综合精品中文字幕| 国产玖玖玖九九精品视频| 最新日韩精品中文字幕| 无码人妻精品一区二区三区99仓本| 九九线精品视频在线观看| 大桥未久在线精品视频在线| 国产在线观看精品一区二区三区91| 精品一线二线三线区别在哪欧美| 国产精品俺来也在线观看|